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Abstract

We analyze the extension of the Standard Model Higgs sector by two ad-
ditional doublets. A particular motivation for this analysis is the special
vacuum structure arising in such models which allows for coexisting charge
breaking and neutral vacua and furthermore for CP breaking minima while
neutral flavor conservation is implemented. For the sake of describing this
structure, we formulate the potential of general three Higgs-doublet models
in terms of gauge independent variables and derive stationarity conditions
using geometrical considerations. We discuss our proceedings in explicitly
calculating these stationary points. Another strong motivation for three
Higgs-doublet models are the manifold possibilities to generate CP viola-
tion within these models. We discuss these possibilities and we use basis
invariant criteria to judge concisely wheter or not CP is a symmetry of a
given potential.
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1 Introduction

Although the Standard Model of particle physics achieved great success in
predicting measurements of high energy physics, it is considered not to be
the last conclusion of wisdom. There remain too many phenomena not un-
derstood in the framework of the Standard Model, such as the observed tiny
neutrino masses [1], dark matter [2] or the baryon asymmetry in the universe
[3].

The Standard Model is also unsatisfactory concerning more philosophical
and aesthetical reasons, see for example [4]. One point regarded as unlovely
is the amount of arbitrary parameters. Furthermore, we do not know why
there are three generations of elementary particles, where their masses come
from, why their charges are quantized the way they are or why there are
unrelated gauge forces. Also, it would be desirable if the gauge couplings
became equal at a certain scale so that strong and electroweak interactions
were unified. This is not realizable in the Standard Model. Finally, grav-
ity is not included in the Standard Model, raising the question why the
Planck scale where we may encounter effects from gravity at quantum level
is that much higher than the scale of electroweak symmetry breaking. Some
of these problems motivate an enlargement of the Higgs sector in the SM.
There, the Higgs sector is built by a single doublet, where the name de-
notes its transformation behavior under SU(2) transformations of the SM
electroweak gauge group SU(2)L × U(1)Y . A strong motivation for an en-
largement with additional doublets are the wide possibilities of introducing
CP violating phases in such models. Especially they open a door for spon-
taneous CP violation. The extension by doublets is also attractive since it
enables simple couplings to the fermion doublets of the Standard Model and
the number of fields therein is relatively small.

The minimal extension to two Higgs doublets is often discussed in litera-
ture (see [5] and references therein) and can be motivated for example by
Supersymmetry. In this thesis, the less common and algebraically more
involved case of three Higgs-doublet is considered. A three Higgs-doublet
model allows interesting phenomenology, such as spontaneous CP violation
while flavor changing neutral currents are absent. Since their structure is
less specific than the simpler cases with one and two doublets, three Higgs-
doublet models give an outlook to models with even more doublets.

This thesis is organized as follows: In chapter 2, we give an overview of
stringent cosmological problems in the Standard Model and why it is at-
tractive to extend the Higgs sector by SU(2) Higgs doublets. We will ex-
plain the mechanism of spontaneous symmetry breaking of the gauge group
SU(2)L × U(1)Y with one and several doublets and discuss special cases
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therein. In chapter 3, we arrive at the three Higgs-doublet and introduce
the notation of scalar potentials in terms of gauge invariant variables. An en-
largement of the Higgs sector entails in general an involved vacuum structure
compared to the Standard Model case with only one doublet. We try to un-
scramble the structure of stationarity points of three Higgs-doublet models
with algebraic methods from group theory and ideal theory. Furthermore,
we attempt to find explicitely minima of three Higgs-doublet potentials via
Gröbner basis methods and a numerical optimization technique. We present
our proceedings chapter 4. Since three Higgs-doublet models give rise to sev-
eral possibilities of CP violation, we dedicate chapter 5 to this topic. We
discuss the possibilities of CP violation in three Higgs-doublet models and
give an analysis of CP violation indicating basis invariants for three Higgs-
doublet potentials in chapter 5.1. In chapter 6 we summarize our finding
and give an outlook on its further use. Finally, we assemble in appendix
A some basics of Gröbner bases and in appendix B used relations of SU(3)
group theory.
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2 Extended Higgs Sector

In the Standard Model, the Higgs sector contains one scalar SU(2) doublet
which is sufficient to create mass terms of the gauge bosons through the
mechanism of electroweak symmetry breaking. But as beautiful this descrip-
tion looks at first sight, there remain some unsolved problems and unan-
swered questions in this sector. First of all, no Higgs bosons have yet been
detected in experiments, leaving wide space for creative model builders. But
there are also more serious reasons for extending the Higgs sector. For exam-
ple, there arise severe contradictions in cosmology: As we want to elucidate
in little more detail, the Standard Model has several rubs in explaining the
obvious baryon asymmetry of the universe. For deeper explanations, we
refer to [6], [7] and references therein.
To achieve a baryon asymmetry outgoing from an initial state with baryon
number equal to zero, there has to be

• baryon number violation,

• C and CP violation,

• departure from the thermal equilibrium1,

as Sakharov stated 1967 in [8].
The only source of CP violation in the Standard Model is a small phase
in the CKM matrix. This phase is constrained by precision measurements
and can explain only a minimal amount of the existing baryon asymmetry
[3]. Besides the CP problem we run into troubles with the third condition.
Departure from the thermal equilibrium is only possible with a strongly first
order electroweak phase transition since the expansion rate of the universe
is not sufficiently large to generate a non-equilibrium. First order phase
transition means, we can imagine a Higgs condensate cooling down and un-
dergoing phase transition by bubble nucleation as it is the case for water
vapour. At some temperature Tc we have two degenerate minima, one zero
and one non-zero, separated by an energy barrier and the condensate starts
to nucleate at this temperature. The symmetry of the Higgs potential is
spontaneously broken in the non-zero minimum and the gauge bosons ac-
quire their masses. There are two ways to get from one to the other vacuum:
First, there is the possibility of quantum tunneling which is named instan-
ton processes. Instantons are exponentially suppressed and therefore less
important. Second, there is the possibility of surpassing the energy barrier
between the states with sphalerons. Such processes only conserve the differ-
ence between baryon and lepton number B − L, but not their sum B + L
such that baryon number violation occurrs during these transitions. Lower-
ing the temperature, the non-zero minimum becomes the global minimum

1Assuming CPT invariance holds
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of the system. The Higgs bubbles expand, percolate and begin to fill all
space and complete the phase transition. The expansion of the bubbles is
a non-equilibrium phenomenon and thus, the third Sakharov condition is
fulfilled. After the phase transition, the remaining baryon number violating
processes, namely the sphaleron-induced reactions, should cease in order not
to dilute the generated asymmetry. The energy of a sphaleron is given by
the height of the potential barrier between the vacuum states which depends
on the Higgs self coupling and its mass. This condition translates to an up-
per bound on the mass of the Higgs particle. It turns out that the current
experimental lower bound on the Standard Model Higgs mass set by direct
searches at LEP [9]

mSM
H > 114.4 GeV (1)

rules out a large enough vev vTc and thus, does not provide the possibil-
ity of a first order electroweak phase transition. Therefore the departure
from thermal equilibrium cannot be achieved. Extending the Higgs sector
by additional Higgs doublets enlarges the parameter space which may be
arranged so that a first order phase transition occurs. Furthermore, the
increased parameter space opens the door for additional CP violation, may
it be explicit or spontaneous.

After all, we can also introduce aesthetic reasons. Why should there be only
one Higgs doublet if there are three generations of fermions? It is somehow
intuitive to introduce three families in the Higgs sector as well. Several
Higgs doublets in the Yukawa sector can also issue the mass hierarchy of
the Standard Model particles by imposing restrictions on their masses and
couplings [10] or give rise to small neutrino masses [11].
The power of Higgs doublet models is the subject of this chapter. We intro-
duce first some “Higgs sector basics”, by justifying the choice of SU(2) dou-
blet representation and treating the spontaneous symmetry breaking with
non-vanishing Higgs-doublet expectation values.

2.1 Higgs representations and the ρ-Parameter

We need to ensure that the choice of doublet representation is phenomeno-
logically reasonable.
The ρ parameter

ρ =
M2
W

cos2 θWM2
Z

(2)

has been experimentally shown to be very close to 1 and gives therefore
severe constraints on the Higgs sector. It is natural to chose ρ = 1 at
tree-level (if nature really has some sense for nice numbers) as it is done,
in the Standard Model. So whatever model we want to build up, it seems
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reasonable not to create a too big deviation from the experimental value. In
order to arrive at ρ = 1,we can either fine-tune the parameters of our model
or extend the Higgs field to carry a suiting representation of the gauge
group SU(2)L × U(1)Y . The first possibility is generally dismissed because
it seems unnatural. So we are left with the second which was derived for
general Higgs representations in [12] and also discussed in [13].
We assume there is a non-vanishing vacuum expectation value of a scalar
field χ

v = 〈0 |χ| 0〉 6= 0, (3)

such that the gauge group is broken spontaneously to the electromagnetic
U(1) gauge group as explained in 2.2. We only treat scalar fields in order to
conserve invariance under Lorentz transformations of our model. The field
χ can be decomposed into eigenstates of weak isospin and hypercharge with
quantum numbers (t, y), where the corresponding operators are related by
the charge operator Q over

Q = T3 + Y. (4)

The mass squares can be expressed in terms of these quantum numbers by
making use of the projector P (t, y). Plugging in the expressions into (2)
yields

ρ =

∑
t,y

[
t (t+ 1)− y2

]
vTP(t, y)v∑

t,y 2y2vTP(t, y)v
. (5)

There is an infinite amount of possibilities leading to ρ = 1 , thereunder
also the SU(2) doublet representation with t = 1

2 and y = ±1
2 . Since it does

not change the result, including more than one doublet remains allowed too.
The choice of doublet goes along with the possibility of Yukawa couplings
to the fermion sector of the Standard Model.

2.2 Gauge symmetry breaking in Higgs-doublet models

In order to describe the weak and electromagnetic interactions and generate
the mass terms of the gauge bosons, one makes use of the Higgs mechanism.
In this mechanism, one or several new scalar fields, the Higgs, couple to the
gauge bosons.
A general Higgs Lagrangian which respects the SU(2)L × U(1)Y symmetry
looks as

Lφ = (Dµϕi)†Dµϕi − µ2
ijϕ
†
iϕj − λijkl(ϕ†iϕj)(ϕ†kϕl). (6)

Repeated indices are summed over.
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The ϕi are assumed to be a SU(2) doublet with hypercharge y = 1
2 ,

ϕi =
(
ϕ+
i

ϕ0
i

)
, i = 1, . . . n. (7)

Hermicity implies further

µ2
ij = µ2∗

ji (8)

λijkl = λklij = λ∗jilk. (9)

If the Higgs potential has a minimum which is non-zero, we say that SU(2)L×
U(1)Y is spontaneously broken. Namely by chosing a special minimum, this
state is not invariant under the full symmetry group but at most under
a subgroup of SU(2)L × U(1)Y . In the Standard Model Higgs sector this
subgroup turns out to be U(1)em.
In the Standard Model, one makes the simplest choice by introducing only
one doublet. We can therefore skip all the indices in (6) and read off the
minimum of the potential. It is achieved for configurations where |ϕ| takes
the value

v =
µ√
2λ

. (10)

This is the lowest energy state of the system, also denoted by vacuum ex-
pectation value (vev).
In unitary gauge, the expansion around this vev can be parametrized as

ϕ =
1√
2

(
0

v + η(x)

)
. (11)

where v is a real value and η(x) is a real field.
The couplings to the gauge bosons arise from the covariant derivative

Dµϕ = (∂µ − ig2
σa
2
W a
µ + ig1

i

2
Bµ)ϕ

=
1√
2

(
−ig2

1√
2
W+
µ (v + η)

∂µη +
√
g2

1 + g2
2Zµ(v + η),

)
(12)

with

W±µ =
1√
2

(
W 1
µ ∓ iW 2

µ

)
(13)

Aµ =
1√

g2
1 + g2

2

(
g1Bµ − g2W

3
µ

)
(14)

Zµ =
1√

g2
1 + g2

2

(
g1Bµ + g2W

3
µ

)
. (15)



2.2 Gauge symmetry breaking in Higgs-doublet models 7

So the complete gauge-kinetic term appears

⇒ (Dµϕ)†Dµϕ =
1
2
∂µ η∂

µη +
1
4
g2

2 v
2W−µ W

µ+ +
g2

1 + g2
2

8
v2 ZµZ

µ

+
v

2
g2

2W
−
µ W

µ+η +
g2

1 + g2
2

4
v ZµZ

µη

+
1
4
g2

2W
−
µ W

µ+η2 +
g2

1 + g2
2

4
ZµZ

µη2. (16)

We state that W±µ and Zµ acquired the masses2

MW =
v

2
g2 (17)

MZ =
v

2

√
g2

1 + g2
2. (18)

Finally we get a neutral massive Higgs field η with mass MH =
√

2µ, one
massive charged W boson and one massive neutral Z boson and a massless
photon field Aµ. The latter corresponds to the linear combination of sym-
metry generators that remain unbroken, which is the U(1)em in this case.
The remaining three degrees of freedom, the two charged Higgs fields and the
imaginary part of the neutral field correspond to the three Nambu-Goldstone
bosons, according to the three generators of the broken SU(2)L × U(1)em
symmetry. They do not occur in the chosen unitary gauge since they have
become the longitudinal modes of Wµ and Zµ.
The couplings of the single Higgs boson η to the gauge bosons can be read
off from the corresponding part of the Lagrangian (16). For example, we see
that the tree-level coupling of the Higgs boson to W+W− is

gηWW = g2MW . (19)

Since one cannot directly access the value of g2 in experiment v has been
determined over the Fermi coupling GF . From µ decay, illustrated in figure
1, we find at tree level

GF√
2

=
g2

2

8M2
W

=
1
v2
, (20)

since the momenta carried by Wµ are of order mµ and therefore neglectable.
GF is accurately measured as GF = 1.166367(5) × 10−5GeV−2 [14] and
yields

v ≈ 246 GeV. (21)

This value is in the following referred to as the electroweak scale.

2W+
µ and W−

µ have the same mass



8 2.2 Gauge symmetry breaking in Higgs-doublet models

νµµ

W e

νe

Figure 3: Determination of the vacuum expectation value v from µ decay.

used to determine v. Since the momentum carried by the W boson is of order
mµ it can be neglected in comparison with MW and we make the identification

GF√
2

=
g2

8M2
W

=
1

2v2
, (40)

which gives the result

v = (
√

2GF )−1/2 = 246 GeV . (41)

One of the most important points about the Higgs mechanism is that all of
the couplings of the Higgs boson to fermions and gauge bosons are completely
determined in terms of coupling constants and fermion masses. The potential
of Eq. 19 had two free parameters, µ and λ. We can trade these for

v2 = −µ2

2λ

M2
h = 2v2λ. (42)

There are no remaining adjustable parameters and so Higgs production and
decay processes can be computed unambiguously in terms of the Higgs mass
alone.

3 Indirect Limits on the Higgs Boson Mass

Before we discuss the experimental searches for the Higgs boson, it is worth
considering some theoretical constraints on the Higgs boson mass. Unfortu-
nately, these constraints can often be evaded by postulating the existence of
some unknown new physics which enters into the theory at a mass scale above

11

Figure 1: µ decay

Instead of one doublet, we may chose an arbitrary number as stated in 2.1.
With several doublets, the vev structure looks more complicated at first:

〈ϕ1〉 =
(
v+

1

vd1

)
〈ϕ2〉 =

(
v+

2

vd2

)
. . . 〈ϕn〉 =

(
vun
vdn

)
. (22)

By chosing a suitable Higgs basis, the structure reduces vastly. A change
of basis3 is achieved by unitary transformations where we use the special
transformation(〈

ϕ′i−1

〉
〈ϕ′i〉

)
=

1√
|vi−1|+2 + |v+

i |2

(
v+∗
i−1 v+∗

i

−v+
i v+

i−1

)(〈ϕi−1〉
〈ϕi〉

)
. (23)

With this transformation we remove the upper component of the Higgs field
ϕi. Beginning with the last field and consecutively applying these transfor-
mations to the doublets, most upper components can be rotated away, the
first doublet may keep in general a v+ value. By replacing the v+ in (23)
with v0, the same is achieved for the lower components. We finally have
only to distinguish between cases with and without upper components in
the vev structure.

Again we find the gauge couplings in the gauge-kinetic term which contains
now a summation over the repeated indices i

(Dµϕi)†Dµϕi =|(∂µ − ig2
σa
2
W a
µ + ig1

i

2
Bµ)ϕi|2. (24)

Expanding around the vevs yields the mass square matrix for the fields(
W+
µ ,W

−
µ , Zµ, Aµ

)
3For a detailed treatment of Higgs basis transformations of the vacuum state, see [15],

a general treatment of this topic follows in section 3.1.
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M2
GB =

1
4


|v0
i |2 + |v+

i |2 0
√

2v+∗
i v0

i g̃
√

2v+∗
i v0

i g̃

0 |v0
i |2 + |v+

i |2
√

2v0∗
i v

+
i g̃

√
2v0∗
i v

+
i g̃√

2v0∗
i v

+
i g̃

√
2v+∗
i v0

i g̃ g̃2|v0
i |2 0√

2v0∗
i v

+
i g̃

√
2v+∗
i v0

i g̃ 0 g̃2|v+
i |2

 (25)

where g̃ =
√
g2

1 + g2
2. We state that there is a mass term for the photon

field if the sum square over the upper components |v+
i |2 does not vanish.

Electric charge conservation induced by the U(1)em symmetry is therefore
broken.
Formulated differently, this means, that the determinant of M2

GB is non-
zero in the case of completely broken SU(2)L × U(1)Y . The determinant
of M2

GB is always vanishing if we have just one doublet. Thus there is no
possibility of a charge breaking ground state in the SM.
If U(1)em is conserved, we can simplify the vev structure to

〈ϕ1〉 =
(

0
v

)
〈ϕ2〉 =

(
0
0

)
. . . 〈ϕn〉 =

(
0
0

)
(26)

by acting as described with transformations (23) on the doublets.
Chosing again the unitary gauge and expanding around the vev

ϕ1 =
1√
2

(
0

v + η

)
ϕ2 =

(
H+

2
1√
2

(h′2 + ih′′2)

)
. . . 〈ϕN 〉 =

(
H+
n

1√
2

(h′n + ih′′n)

)
,

(27)

yields the same result for the first doublet as in the one-doublet case, but
every additional doublet gives rise to four massive Higgs fields. Especially,
there are also physical charged fields. v is fixed by the mass of the W boson
(17). The physical mass eigenstates of the charged fields H+

i and the neutral
fields hi are derived by diagonalizing the corresponding mass matrices.

The new physical Higgs fields couple to the gauge bosons, giving rise to
contributions to processes like WW scattering. From such scattering ampli-
tudes arise unitarity constraints, meaning growing energy terms contributing
to the amplitude need to cancel among each other so that the theory remains
renormalizable. With one doublet, this is guaranteed by the relation (19).
With more than one doublet, the cancellations can be arranged by all of
them and not just by a single one. Unitarity is restored, if the couplings
of the scalar bosons to the vector gauge bosons and the fermions obey sum
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rules in the manner of
n∑
i=1

g2
h0
i V V

= g2
ηV V (28)

n∑
i=1

gh0
i V V

gh0
i ff̄

= gηV V gηff̄ (29)

where V denotes the vector gauge bosons Zµ, Wµ, Aµ and η is the Higgs
field of the SM one-doublet case. This rules are derived in [16], see also [17].
If the ground state does not respect the U(1)em symmetry anymore, we use
basis transformations and gauge freedom to simplify the vev structure to

〈ϕ1〉 =
(
α
v1

)
〈ϕ2〉 =

(
0

v2 e
iδ

)
〈ϕi〉 =

(
0
0

)
, i = {3, 4, . . . , n} (30)

where the parameters α, v1, v2 and δ are real.
The non-vanishing upper component α leads to a mass term

mA =

√
g2

1 + g2
2

2
α (31)

of the photon field Aµ and charge non-conserving couplings of physical
charged Higgs fields to the neutral photon field. Instead of three Goldstone
bosons, now four degrees of freedom get “eaten up” by the longitudinal
modes of the gauge bosons, according to the four generators of the broken
SU(2)L × U(1)Y gauge group.

2.3 CP violation

In the Higgs potential, there are two mechanisms providing CP violation.
First, the couplings need not to be real allowing explicit CP breaking terms
in (6). Furthermore, in models with several Higgs doublets CP violation
may occur spontaneous breaking of the discrete CP symmetry. We expound
in this section forehand the latter possibility since we have just introduced
the useful tools and notations. At a later point, in chapter 5 we will return
to explicit CP violation.
By spontaneously breaking CP, the CP-reflected ground-state is not the
same as the initial one. Assuming a potential invariant under CP and the
Higgs fields are in the basis where all parameters are real [18], a charge-
preserving but CP violating vacuum can be brought in the form of

〈ϕ1〉 =
(

0
v1 e

iδ

)
〈ϕ2〉 =

(
0
v2

)
〈ϕi〉 =

(
0
0

)
, i = {3, 4, ..., n}, (32)

with v1, v2 and δ real, with corresponding gauge transformations and under
the use of freedom of reparametrization.
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The idea of spontaneous breaking of the discrete CP symmetry was intro-
duced in 1973 by T. D. Lee [19]. He showed, that two Higgs doublets it
were sufficient in order to generate spontaneous CP violation. Since with
this mechanism, CP is still a symmetry of the Lagrangian, the idea of spon-
taneous CP violation is thrilling.
Spontaneous breaking of discrete symmetries is not free of problems. A
symmetry breaking vacuum causes domain walls at the phase transition,
whose energy density dominates matter and radiation energy density of the
universe. Such domain walls destroy the isotropy of the relic radiation [20]
such that including spontaneous CP violation in a model needs at least some
renovation. One way out is to settle the scale of spontaneous CP violation
much higher than the electroweak scale. On the other hand, it would be
preferable to have the spontaneous CP violation near the electroweak scale
for the purpose of baryogenesis. In this case, one needs to impose a mecha-
nism to avoid the domain wall problem, see for example [21].
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3 Three Higgs-doublet models

It turns out to be very convenient to treat potentials with several Higgs
doublets in terms of gauge invariant variables instead of the physical fields.
This has been worked out for the two Higgs doublet case in great detail in
[22] , [23] and before in [13]. We introduce the notation for n Higgs doublets
and therein especially the case n = 3.

3.1 Change of Higgs fields basis

A general Higgs Lagrangian (6) with n Higgs doublets is invariant not only
under the SU(2)×U(1) gauge group transformations but also under unitary
transformations

ϕi −→ ϕ′i = Uijϕj U ∈ U(n). (33)

For the kinetic part of the Lagrangian this is obvious, for the potential this
is realized if the parameters transform in the following way:

µ2
ij −→ µ2′

ij = Uii′U
∗
jj′µ

2
i′j′ (34)

λijkl −→ λ′ijkl = Uii′U
∗
jj′Ukk′U

∗
ll′λi′j′k′l′ . (35)

Due to this transformation law we recognize that the overall phase of U
vanishes in the potential. It is therefore sufficient just to deal with the
subgroup

SU(n)ϕ ⊂ U(n)ϕ. (36)

SU(n)ϕ is sometimes denoted by rotations in horizontal space [24]. These
transformations reflect the freedom of reparametrizing the Higgs fields what
we have already considered in section 2.2.

3.2 Orbit variables

A general model containing several Higgs doublets,

ϕi =
(
ϕ+
i (x)
ϕ0
i (x)

)
, (37)

can be parametrized in a matrix formed of SU(2)× U(1)Y -invariant scalar
products,

Kij := ϕ†j ϕi. (38)

Arranging the Higgs fields in a matrix

φ ≡


ϕ+

1 (x) ϕ0
1(x) 0 . . . 0

ϕ+
2 (x) ϕ0

2(x) 0 . . . 0
...

...
...

...
ϕ+
n (x) ϕ0

n(x) 0 . . . 0

 (39)
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yields

K ≡ φφ†. (40)

To arrive at the real degrees of freedom, a decomposition of the matrix K
is useful,

K = K0
λ0

2
+
n2−1∑
a=1

Ka
λa
2
, (41)

where λa
2 are the generators of SU(n), complemented with

λ0 ≡
√

2
n
1n. (42)

The coefficients K0 and Ka are real by construction and can be calculated
by taking the traces

K0 = tr(Kλ0), (43)
Ka = tr(Kλa). (44)

The generators fulfill
Trλiλj = 2δij . (45)

Looking at this decomposition under the aspect of group theory, we find the
Kij must form a representation of the tensor product n̄⊗ n of fundamental
and anti-fundamental SU(n) representations. This SU(n) arises from the
SU(n)ϕ Higgs flavor transformations. The product decomposition reveals

n̄⊗ n = 1⊕ (n2 − 1) (46)

This means, K0 transforms as a singlet under a flavor transformation and
the octet Ka transforms under the adjoint representation of SU(n). The
adjoint representation is built by exponentiating the structure constants of
the Lie group and is therefore a real and antisymmetric (n2 − 1)× (n2 − 1)
matrix.4 K0 and Ka are invariant under SU(2)L × U(1)Y gauge transfor-
mations so we denote them as gauge invariant orbit variables.

The definition (40) implies

rankK = rankφ (47)

which means
rankK ≤ 2. (48)

4Note that in the case n = 2, the adjoint representation adj SU(2) is isomorphic to
SO(3). This nice feature is missing for n ≥ 3
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Furthermore, K is positive semidefinite, also implied by its definition.

We note that any hermitian, positive semidefinite matrix K of rank ≤ 2
describes a field configuration.

This can be verified by writing the corresponding matrix K as

K = U †

λ1 0 0
0 λ2 0
0 0 0

U, (49)

where λ1 and λ2 are real and non-negative and U is a unitary matrix.

The non-negativity of the eigenvalues implies

λ1 + λ2 ≥ 0 (50)
λ1 · λ2 ≥ 0, (51)

which are statements about the principal 1- and 2-minors of the matrix K.

Due to the positivity of the eigenvalues we can write the eigenvalues as
squares λi = w2

i . We identify the field configuration as

φ =

w1 0 0
0 w2 0
0 0 0

U. (52)

We resume the founding in:

K describes a field configuration if

the sum of all principal 1-minors is non-negative and (53)
the sum of all principal 2-minors is non-negative and (54)
the principal 3-minor, i. e. the determinant, is zero. (55)

3.3 Orbit variables for three Higgs-doublet models

In the case n = 3, the flavour group of the Higgs doublets is SU(3φ). We
find the Gell-Mann matrices as appropriate λa in (41)
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λ1 =

0 1 0
1 0 0
0 0 0

 λ2 =

0 −i 0
i 0 0
0 0 0

 (56)

λ3 =

1 0 0
0 −1 0
0 0 0

 λ4 =

0 0 1
0 0 0
1 0 0

 (57)

λ5 =

0 0 −i
0 0 0
i 0 0

 λ6 =

0 0 0
0 0 1
0 1 0

 (58)

λ7 =

0 0 0
0 0 −i
0 i 0

 λ8 =


1√
3

0 0
0 1√

3
0

0 0 − 2√
3

 (59)

They obey the following relations:

λaλb = 2δab (60)[
λa, λb

]
= i fabcλ

c (61)

{λa, λb} = dabcλ
c (62)

The three doublets arranged in a matrix of maximum rank 2 form the matrix
K = φφ† as described in equation (38). Applying the decomposition (44),
the real orbit variables are

K0 =

√
2
3
(|ϕ1|2 + |ϕ2|2 + |ϕ3|2

)
K1 = 2 Reϕ†1ϕ2 K2 = 2 Imϕ†1ϕ2

K3 = |ϕ1|2 − |ϕ2|2 K4 = 2 Reϕ†1ϕ3

K5 = 2 Imϕ†1ϕ3 K6 = 2 Reϕ†2ϕ3

K7 = 2 Imϕ†2ϕ3 K8 =
1√
3

(|ϕ1|2 + |ϕ2|2 − 2|ϕ3|2
)
. (63)

The conditions for non-negativity of the sum of the principal 1- and 2-minors
translate to

K11 +K22 +K33 ≥ 0 (64)

K11K22 − |K12|2 +K22K33 − |K23|2 +K33K11 − |K31|2 ≥ 0 (65)

In terms of the variables (63), this reads as

K0 ≥ 0 (66)

2K2
0 −K2

1 −K2
2 −K2

3 −K2
4 −K2

5 −K2
6 −K2

7 −K2
8 ≥ 0. (67)
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The condition of vanishing 3-minor yields in this case

detK = 0 (68)

We use the SU(3) anticommutation relation to write the determinant in
terms of the orbit variables.

det
(
Kaλ

a +K0λ
0
)

=
1
3!
εijkεlmn

(
Kaλ

a
il + K̃0δil

)
×
(
Kbλ

b
jm + K̃0δjm

)(
Kcλ

c
kn + K̃0δkn

)
=

1
3!

(δilδjmδkn + δjnδimδkl + δinδjlδkm

− δilδjnδkm − δimδjlδkn − δinδjmδkl)
×
(
Kaλ

a
ilKbλ

b
jmKcλ

c
kn + K̃0

(
Kaλ

a
ilKbλ

b
jmδkn

+δilKbλ
b
jmKcλ

c
kn +Kaλ

a
ilδjmKcλ

c
kn

)
+K̃2

0

(
δilKbλ

b
jmδkn +Kaλ

a
ilδjmδkn + δilδjmKcλ

c
kn

)
+ K̃3

0δilδjnδkn

)
=

1
3!

(
KaKbKc tr{λa, λb}λc − K̃0KaKb trλaλb

−K̃0KaKc trλaλc − K̃0KbKc trλbλc + K̃3
0

)
=

2
3
dabcKaKbKc − K̃0K

2
a + K̃3

0 , (69)

where the indices a, b, c run from 1 to 8 and K̃0 =
√

2
3K0. We made therein

use of a similar treatment as in [25].
If (67) is equal to zero, we can subtract K̃0(2K2

0 − K2
a) without changing

(69), yielding finally the simplified constraint√
3
2
dabcKaKbKc − 2K3

0 = 0 (70)

Resuming, we find for a vacuum state three possible settings which can be
identified with the physical scenarios described in section 2.2:

• No symmetry breaking

K0 = Ki = 0

The conditions detK = 0 and 2K2
0 − K2

i = 0 are trivially fulfilled.
The vev is zero and remains symmetric under the whole gauge group
SU(2)L × U(1)Y .
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• SU(2)L × U(1)Y broken down to U(1)em

K0 > 0

2K2
0 −K2

i = 0√
3
2
dabcKaKbKc − 2K3

0 = 0

There is a non-zero vev which breaks SU(2)×U(1)Y to U(1)em. Since
U(1)em is conserved, we refer to these vacua as neutral ones.

• Completely broken SU(2)× U(1)Y

K0 > 0

2K2
0 −K2

i > 0

dabcKaKbKc −
√

3
2
K0K

2
a +

√
2
3
K3

0 = 0

The neutral and the charged fields acquire non-vanishing vevs, U(1)em
is no longer symmetry of the ground state. We refer to these vacua as
charge breaking vacua.
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3.4 The three Higgs-doublet potential

A general potential in terms of the orbit variables reads as

V = V2 + V4

= ξ̃
T
K + K̃T ẼK̃, (71)

where

ξ̃
T

= (ξ0, ξ) (72)

η̃T = (η0,η) (73)

K̃T =
(
K0,KT

)
(74)

Ẽ =
(
η0 ηT

η ηij

)
, (75)

with the indices i, j running from 1 to 8 and bold symbols without tildes
represent eight dimensional vectors. We will denote the submatrix ηij by
E. The notation V2 and V4 refers to the terms quadratic and quartic in the
fields which correspond to the terms linear and quadratic in the Ki.
The potential is invariant under the change of basis of the Higgs fields (33)

K ′0 = K0

K′ = R(U) K (76)

with R(U) ∈ SU(3), if the parameters transform as

ξ′0 = ξ0, ξ′ = R(U)ξ
η′0 = η0, η′ = R(U)η E′ = R(U) ERT(U). (77)

There is in general a vast number of parameters, namely 54, in the most
general potential. By basis transformations we can eliminate 8 parameters,
leaving still 46. Note that the structure of SU(3) does not allow arbitrary
real SO(8) rotations.
This formalism can be extended analogously to n-Higgs-doublet models.
Assuming SU(n)ϕ symmetry such a potential has n2 ξ̃-parameters, (n2−1)2

ηij and n2−1 parameters can be absorbed by basis transformations, leaving

1
2
n2(n2 + 1) + 1 (78)

parameters.
In a three Higgs-doublet potential, we can restrict the parameter space by
imposing some conditions which we will discuss in the following:

• Stability of the potential restricts the parameter space.
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• Requiring the potential to reproduce the electroweak scale as a mini-
mum relates the parameters to v.

• Requiring explicit CP-conservation reduces 16 parameters (see 5).

• Discrete symmetries can be imposed, for example in order to guarantee
neutral flavor current conservation.

By applying the last possibility, one has to be aware that continuous sym-
metries might appear. By imposing the discrete symmetry

φ1 −→ φ1 (79)

φ2 −→ eiαφ2, α 6= 0, π (80)

φ3 −→ eiβφ3, β 6= ±α, 0, π (81)

the potential is automatically invariant under transformations with arbitrary
values for α and β; thus, we created a continuous U(1) × U(1) symmetry.
Such a symmetry is problematic since it gives rise to additional massless
Goldstone bosons when the symmetry is spontaneously broken. A treatment
of such symmetries with their categorization can be found in [26].

3.5 Stability of three Higgs-doublet potentials

A potential possesses a global and therefore stable minimum only if it is
bounded from below. To ensure this, the potential should remain positive
or be at least zero for large field configurations. We need to consider the
behavior of the potential for K0 → ∞ in order to make statements about
the stability of a potential.
We remember that K0 = 0 corresponds to the special case where the three
Higgs fields simultaneously vanishing. Since this configuration does not
influence the stability of the potential we neglect this case and define for
K0 > 0

k :=
K
K0

(82)

and express the potential in terms of

V2 = K0 J2(k) (83)

V4 = K2
0 J4(k). (84)

Because for minima of the potential |k| ≤ √2 is valid, stabilitiy is defined
over the signs of the functions J2(k) and J4(k) defined on the domain |k| ≤√

2.
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For a vanishing quartic potential, J2(k) needs to be positive or equal to zero
in order to keep the potential stable. In case of strict positivity J2(k) > 0,
the potential grows to infinity for K0 →∞ which is named stable in a strong
sense. If the quartic part fulfills J4(k) > 0, we do not have to consider the
quadratic part any more beacause this terms grows to infinity for K0 →∞
even faster.
Thus the stability statement is more robust if it is defined only over the
quartic terms in the potential

J4(k) > 0 for |k| ≤
√

2, (85)

which corresponds to

η0 + 2 ηTk + kTEk > 0 for |k| ≤
√

2. (86)

We see that we are at the save side if Ẽ is positive definite but in principle
we could imagine a setting where E does not need to be positive definite as
long as η0 has a sufficiently large positive value. In the following section we
shall see, that at least positive semidefiniteness on the domain |k| ≤ √2 is
needed to provide a minimum of the potential.

4 Stationary points of three Higgs-doublet models

Finding the minima of a potential or optimization problems in general are
not the biggest challenge in physicists life. Mostly, one is satisfied by the
existence or the formulation of stationarity conditions. Still, the knowl-
edge about an eventual structure behind Higgs potential minima is somehow
thrilling. Since one of these points - the electroweak symmetry breaking scale
- influences the behavior of most physical observables in collider physics and
finally today’s universe, stationary points are not that unimportant. Taking
into account more than two Higgs doublets leads to a more involved structure
of vacuum expectation values, allowing for example charge breaking vacua
below neutral ones [15]. This phenomenon would technically open the pos-
sibility that our world one day could happen to allow charge non-conserving
processes when tunneling into the respective ground state universe. Further,
the existence of CP violating minima as a source of CP violation is attractive.
All this nice phenomena do not solve the explicit problem of finding such
points. In literature, basing on the field formalism, mostly numerical meth-
ods were taken into account. These methods do not guarantee to find the
global minimum of a system. Inspired by the Gröbner basis method applied
to two Higgs doublet models in [28] and [23], we tried to find a similar treat-
ment for the three Higgs-doublet case. The first challenge in our work was
to formulate the stationarity conditions for three Higgs-doublet potentials.
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Figure 2: We look at the stationary points with K1 = K2 = K4 = K5 =
K6 = K7 = 0. The blue cone shows the region where the condition 2K2

0−K2

is fulfilled. The red surfaces correspond to regions with vanishing determi-
nants. Neutral stationary points lie on the yellow edges where both condi-
tions are fulfilled. Charge breaking stationary points lie inside the cone on
the red pyramid spanned by the regions of vanishing determinant.

Thereby, we make use of the special behavior under SU(3) transformations
arising from the freedom of reparametrization. It is an extension of the phe-
nomena described earlier, especially for the two Higgs-doublet model and
already partially for the n Higgs-doublet case for example in [13], [23], [24],
[29], [30].

4.1 Irregular constraints in 3HDM stationary points

Finding stationary points of the Higgs potential in terms of the real orbit
variables is a problem with equality and inequality constraints. Especially
the former case is of interest since it describes the neutral stationary points
which are physically attractive.

In an intuitive attempt, one would chose Lagrange multiplier formalism for
such an optimization as it was done in [23] for the two Higgs-doublet model
case. For a neutral stationary point this would lead to the stationarity
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equations

∇ eK (V + u1 detK + u2

(
2K2

0 −K2
))

= 0 (87)
detK = 0 (88)

2K2
0 −K2 ≥ 0 (89)

K0 ≥ 0. (90)

This procedure works for charge breaking stationary points. In this case, we
need only to consider the first constraint and check the solutions to fulfill
2K2

0 − K2 > 0. We will discuss this case later on and take a look at the
neutral vacuum solutions.
Unfortunately, the Lagrange multiplier approach leads to bigger problems in
this case. The constraints (67) and (69) are irregular, meaning the gradients
in a neutral stationary point are not linearly independent.

∇ eK detK| eKstat= 0 for K̃stat fulfilling 2K2
0 −K2 = 0 (91)

We illustrated the constraints in figure 2 where the yellow colored edges
mark the irregular regions5.
Such a setup cannot indicate the sought-after stationarities since the gradi-
ent of an optimum of a target function does not necessarily need to point in
the direction of the gradient of the constraints.
In optimization theory, the condition of linear independence of the con-
straints runs under the name of linear independence constraint qualification
in the framework of Karush-Kuhn-Tucker conditions [31], [32]. Coping with
this problem is in general non-trivial and entails mostly numerical optimiza-
tion methods, see for instance [33], [34]. We present our experiences with a
numerical optimization method at the end of this chapter.

4.2 Stationarity conditions for neutral stationary points

In terms of the physical fields, stationarity of a point means that the po-
tential remains constant in this point under small deflections of the fields.
Therefore, we expand the potential around a stationary point in the physical
fields and require the linear terms to vanish.
To determine the stationary points in the real orbit variables there can be
done a Taylor expansion too

V (Kmin + δK) = V (Kmin) + δV +
1
2
δ2V + ... (92)

with

δV =
∂V

∂Kα
δKα δ2V =

∂2V

∂Kα∂Kβ
δKαδKβ. (93)

5Note that in the corresponding basis the neutral stationary points can always be
arranged the way it is done in fig. 2
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At a stationary point, the variation δV vanishes for admissible δKα which
are the ones fulfilling (67) and (69). The greek index denotes that summation
starts from zero.
In the space of the admissible Kα, we find two transformations which leave
the potential invariant.

SU(3) rotations: Corresponding to the SU(3) transformations of the
fields, we can rotate K. K0 is not affected by such transformation thus
its variation is zero and we need only to consider the variations of the Ki

with i 6= 0. Infinitesimally an SU(3) transformation in the eight dimensional
space of the orbit variables Ki looks like

Uij = δij + δθkfkij , (94)

yielding
δKi = δθjf ijkKk. (95)

So, in this case the variation of the potential for admissible δKi becomes

δV =
∂V

∂Kj
δθif ijkKk (96)

and for stationarity,eight equations are fulfilled, namely

fijk
∂V

∂Kj
Kk = 0. (97)

Rescaling in direction of K: We are free to rescale the orbit variables
in the direction of the vector K. Such a transformation does not leave the
kinetic terms of the Lagrangian invariant.
Infinitesimally the transformation matrix looks like

Λ =
(

1 1
2β

βT 18

)
. (98)

We chose now β = δαK with α an infinitesimal real proportionality factor,
transforming K̃ as

K0 −→ K0 +
1
2
δαK2 (99)

K −→ K + δαKK0. (100)

Using condition (67), the variation of the potential becomes

δV =
∂V

∂K0
α

1
2
K2
i +

∂V

∂Ki
δαK0Ki

=
∂V

∂K0
αK2

0 +
∂V

∂Ki
δαK0Ki. (101)
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Considering K0 > 0, the stationarity equation with respect to this variation
reads

K0
∂V

∂K0
+Ki

∂V

∂Ki
= 0. (102)

We may still formulate stationarity in the common field formalism. There,
we find from the expansion in the fields around a stationary point that
stationarity is given if the terms linear in the fields vanish.

The equivalence of this condition and the equations (97), (102) is prooved
in the following.

We start in the field formalism doing the expansion around a neutral vev in
unitary gauge (27). Vanishing of the terms linear in the fields yields

µ2
11 = −λ11,11v

2 (103)

µ2
12 = −λ11,11

v2

2
(104)

µ2
13 = −λ11,13

v2

2
, (105)

determing five parameters of the potential since µ12 and µ13 are complex
values.

A potential with these parameters fulfils the stationarity conditions (97),
(102) which can be checked by reinserting the parameters in the gauge orbit
formalism.

Starting in the gauge orbit variable formalism we know a neutral stationary
point leads to rangK = 1. We are free to chose a basis fulfilling

K1 = K2 = K4 = K4 = K5 = K6 = K7 = 0 (106)√
2K0 − 2K8 = 0 (107)√

2K0 −
√

3K3 +K8 = 0 (108)√
2K0 +

√
3K3 +K8 6= 0, (109)

meaning only K11 6= 0.

We set K3 = 1
2v

2, K8 = 1
2
√

3
v2, K3 = 1√

6
v2 and insert this point in (97) ,
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(102) which gives us the equations

ξ1 = −1
3
v2
(√

6η1 + 3η13 +
√

3η18

)
(110)

ξ2 = −1
3
v2
(√

6η2 + 3η23 +
√

3η28

)
(111)

ξ4 = −1
3
v2
(√

6η4 + 3η34 +
√

3η48

)
(112)

ξ5 = −1
3
v2
(√

6η05 + 3η35 +
√

3η58

)
(113)√

2
3
ξ0 + ξ3 +

1√
3
ξ8 = − 1√

3
v2
(

2η0 + 2
√

6η3 + 2
√

2η8 + 3η33 + 2
√

3η38 + η88

)
.

(114)

We note that equally five parameters of the potential are defined through
these equations. By expressing the result from the field formalism (103) -
(105) in terms of ηi, ηij and ξi, we find that the same parameters are defined
in both formalisms.
If a stationary point is a minimum or maximum is defined over the sign of
the second variation

δ2V =
∂2V

∂Ki∂Kj
δKiδKj . (115)

For positive values, the point is a minimum, for negative values we find a
maximum.
Adopted to our special transformations, we find the two matrices

H
SU(3)
ij = f ilmf jpq

∂2V

∂Kl∂Kp
KmKq (116)

Hboost
αβ =

∂2V

∂Kα∂Kβ
(117)

which provide, contracted with δθi δθj , α2KαKβ respectively, the second
variations. If both matrices are positive definite in a stationary point, the
point is a local minimum, respectively if they are negative definite, it is a
maximum. In case of indefiniteness, i. e. positive and negative eigenvalues
occur, the potential increases in directions of the positive eigenvectors, but
decreases in the directions of the negative ones. Thus, the stationary point is
a saddle point. In case of semidefiniteness, one has to check the higher order
variations to get to know the behavior of the potential under variations in
all directions.
Interestingly, the second matrix, (117), reproduces the condition Ẽ being
at least positive semidefinite on the domain 2K2

0 −K2 = 0 to guarantee a
stable potential.
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We found in this section the stationarity conditions for a neutral stationary
point to be

fijk
∂V

∂Kj
Kk = 0

K0
∂V

∂K0
+Ki

∂V

∂Ki
= 0. (118)

4.3 Structure of neutral stationary points

For a neutral vacuum, equations (118), (69) and (67) hold. We can imagine
from these equations, that a special structure might underlie the solution.
Knowledge about this structure simplifies the finding of solutions at least
for some special cases.
Starting with (97) one notices the similarity to a vector cross product in
three dimensions. In this case, we find

v ∧w⇐⇒ v ∝ w (119)

But unlike in three dimensions, in eight dimensions the antisymmetric tensor
product does not only vanish for parallel vectors but also if the two vectors
in the product are related in a symmetric way. Luckily the number of such
possibilities independent of each other is constrained in this case too.
We take a look at a general vanishing symmetric contraction of two octets
aj and bk

fijkajbk = 0 (120)

Suppose the octet a is given and we want to find the form of b. We are free
to look at the setup in a basis where a takes the form

aT = (0, 0, a3, 0, 0, 0, a8). (121)

To construct this basis we represent a in three dimensions

ai λ
i =

a3 + a8√
3

a1 − i a2 a4 − i a5

a1 + i a2 −a3 + a8√
3

a6 − i a7

a4 + i a5 a6 + i a7
2 a8√

3

 . (122)

and diagonalize it by the use of SU(3) transformations which is possible
since (122) is a hermitian 3 × 3 matrix. In this new basis only a3 and a8

are unequal to zero. We have to do the case distinction between ai λ
i with

non-degenerate and ai λ
i with degenerate eigenvalues.

• If a3 6= 0 and a3 6= ± 1√
3
a8, (120) yields for b the form
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bT = (0, 0, b3, 0, 0, 0, b8). (123)

Further, we find

a ∗ a := dijkajak =
1√
3

(
0, 2a3a8, 0, 0, 0, 0, a2

3 − a2
8

)T (124)

being linearly independent on a. Thus, the space of solutions is
spanned by a and a ∗ a.

• If a3 = 0 and a8 6= 0, the components of b are less restricted, namely
we find

b = (b1, b2, b3, 0, 0, 0, 0, b8)T . (125)

a and a ∗ a are no longer independent in this case but since the sym-
metric product of two b takes the form

b ∗ b =
1√
3

(
2b1b8, 2b2b8, 2b3b8, 0, 0, 0, 0, b21 + b22 + b23 − b28

)T
, (126)

we can express a as a linear combination of b and b ∗ b.

• If a3 = ± 1√
3
a8, b has to be of the form

b = (0, 0, b3, 0, 0, 0, 0, b8)T . (127)

Again a can be expressed as a linear combination of b and b∗b, which
is in this special basis

a ∝ (b3 ± 1√
3
b8)b + b ∗ b (128)

Adapted to our problem, where the octets a and b correspond to K and
∇K V , we would initially expect to encounter two types of neutral stationary
points:

∇KV = αK + βK ∗K (129)
K = α′∇KV + β′∇KV ∗ ∇KV. (130)

On second thought, we remember that neutral stationary points correspond
up to basis transformations to configurations with
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K3 = ± 1√
3
K8, K0 =

√
2
3
K8, Ki = 0 for i 6= 3, 8 or (131)

K0 = ±
√

2K8, Ki = 0 for i 6= 8, (132)

which are the special cases pointed out above, thus the gradient takes the
form (125) or (127) in the corresponding basis and K is decomposable only
in the fashion of (130).

Examples We assume gradient and stationary point to be parallel in the
neutral stationary point, meaning β′ is zero in (130). It is more an illustra-
tive than a physical motivated example.
From (102), we deduce

∂V

∂K0
K0 +

∂V

∂Ki
Ki =

∂V

∂K0
K0 + αK2

i

(67)
=

∂V

∂K0
K0 + 2αK2

0

= 0

and therefore, using K0 > 0

∂V

∂K0
+ 2αK0 = 0. (133)

In terms of the parameters of the potential, this reads

ξi + 2 ηiK0 + 2 ηijKj = αKi (134)
ξ0 + 2 η0K0 + 2ηiKi = −2αK0. (135)

From (134), we get

Ki = − (2 ηij − α δij)−1 (ξj + 2 ηjK0) , (136)

assuming α is no eigenvalue of 2 E.
Putting this back into (133), we find

K0(α) =
ξ0 − ηi (2 ηij − α δij)−1 ξj

2
(
ηi (2 ηij − α δij)−1 ηj − η0 − 2α

) (137)

Ki(α) = − (2 ηij − α δij)−1

ξj − 2ηi
ξ0 − ηk (2 ηkl − α δkl)−1 ξl

2
(
ηk (2 ηkl − α δkl)−1 ηl − η0 − 2α

)


(138)

assuming again the denominator is non-vanishing.



4.4 Mass reparametrization 29

The value of α is determined now by (69). Thus, we conclude a potential
has a stationary point parallel to the gradient in this point if there exists a
real α so that

2K0(α)3 −
√

3
2
dijkKi(α)Kj(α)Kk(α) = 0.

For the second example, we assume α′ = 0. We can use the the condition
(69) and the SU(3) relations to simplify

2K3
0 −

√
3
2
dijkKiKjKk = 2K3

0 − β
√

2
3

(
∂V

∂Ki
Ki

)2

− β 1√
6
∂V

∂Ki

2

K2
i

= 2K3
0 − β

√
2
3
∂V

∂K0

2

K2
0 − β

2√
3
∂V

∂Ki

2

K2
0

= 0

yielding

K0 =
1√
6
β

(
∂V

∂K0

2

− ∂V

∂Ki

2)
. (139)

Thus, a neutral stationary point of this kind is provided by the set of only
quadratic equations

K0 − 1√
6
β

(
∂V

∂K0

2

− ∂V

∂Ki

2)
= 0

Ki − βdijk ∂V
∂Kj

∂V

∂Kk
= 0

∂V

∂K0
K0 +

∂V

∂Ki
Ki = 0.

4.4 Mass reparametrization

In order to reproduce electroweak symmetry breaking in our model we can
arrange the three Higgs-doublet potential such that v = 246 GeV is a sta-
tionary point by construction.
In the adequate gauge, the vacuum expectation values of the doublets are

〈ϕ1〉 =
(

0
v1

)
〈ϕ2〉 =

(
0

v2 e
iξ

)
〈ϕ3〉 =

(
0

v3 e
iχ

)
. (140)

Using the SU(3)ϕ basis transformations, we can arrange that only one vac-
uum expectation value is non-zero for a neutral vacuum.

〈φ〉 =

0 v/
√

2 0
0 0 0
0 0 0

 v =
√

2
(
v2

1 + v2
2 + v2

3

)
. (141)
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To get the physical, massive fields, we have to look at the deviations from
the vacuum expectation value. The shifted fields in unitary gauge where the
charged field and the imaginary part of the neutral field of the first doublet
is set to zero and the remaining real part of the neutral field is positive

ϕ1 =

(
0

1√
2

(v + ρ)

)
ϕ2 =

(
H+

2
1√
2

(h′2 + ih′′2)

)
ϕ3 =

(
H+

3
1√
2

(h′3 + ih′′3)

)
(142)

The orbit variables split into three parts according to their power in the
physical fields

K = K{0} + K{1} + K{2} (143)

K{0} =
v2

2



√
2
3

0
0
1
0
0
0
0
1√
3


K{1} = v



2√
3
ρ

h′2
h′′2
ρ
h′3
h′′3
0
0
1√
3
ρ


(144)

K{2} =
1
2



√
2
3

(
ρ2 + h′22 + h′′22 + 2H+

2 H
−
2 + h′23 + h′′23 + 2H+

3 H
−
3

)
2ρh′2
2ρh′′2

ρ2 − h′22 − h′′22 − 2H+
2 H

−
2

2ρh′3
2ρh′′3

2
(
h′2h

′
3 + h′′2h

′′
3 +H+

2 H
−
3 +H−2 H

+
3

)
2
(
h′2h

′′
3 − h′′2h′3 +H−2 H

+
3 −H+

2 H
−
3

)
1√
3

(
ρ2 + h′22 + h′′22 + 2H+

2 H
−
2 − 2h′23 − 2h′′23 − 4H+

3 H
−
3

)


.

(145)

Expressing the potential in terms of this decomposed K, also according to
the power in the fields, yields

V{0} =
(√

2ξ0 +
√

3ξ3 + ξ8

) v2

12
(146)

V{2} = KT
{1}ẼK{1} + 2 KT

{0}ẼK{2} + KT
{1}ẼK{1} + ξ̃

T
K{2} (147)

V{3} = 2 KT
{1}ẼK{2} (148)

V{4} = KT
{2}ẼK{2}. (149)
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We used further the relations (110) - (114), which are valid for the cho-
sen stationary point, and put them into the expressions above. This leads
naturally to

KT
{1}ẼK{0} = −1

2
KT
{1}ξ̃, (150)

reflecting that the field-linear part V{1} vanishes in stationary points.

We can identify this stationary point with the setup in equation (127) and
find therefrom it has to be of the form (128). Explicitely, we find

K{0} ∝ ∇KV |K{0} + α (∇KV ∗ ∇KV ) K{0} (151)

where α = −2v2η0
3 −

√
2
3v

2η3 − 1
3

√
2v2η8 −

√
2
3ξ0.

The terms quadratic in the fields determine now the masses of the physical
Higgs bosons. We get two mass squares matrices, one for the neutral fields
h = (ρ, h′2, h

′′
2, h
′
3, h
′′
3), one for the charged fields H = (H+

2 , H
+
3 )

V{2} =
1
2
hTM2

neutralh+H†M2
chargedH (152)

The coefficients mij of the symmetric matrix M2
neutral are
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m11 =
v2

3

(
2η0 + 2

√
6η3 + 2

√
2η8 + 3η33 + 2

√
3η38 + η88

)
(153)

m12 = v2

(√
2
3
η1 + η13 +

η18√
3

)
(154)

m13 = v2

(√
2
3
η2 + η23 +

η28√
3

)
(155)

m14 = v2

(√
2
3
η4 + η34 +

η48√
3

)
(156)

m15 = v2

(√
2
3
η5 + η35 +

η58√
3

)
(157)

m22 = v2

(
−
√

2
3
η3 + η11 − η33 − η38√

3

)
− ξ3 (158)

m23 = v2η12 (159)

m24 =
v2

6

(√
6η6 + 6η14 + 3η36 +

√
3η68

)
+
ξ6

2
(160)

m25 =
v2

6

(√
6η7 + 6η15 + 3η37 +

√
3η78

)
+
ξ7

2
(161)

m33 = −v2

(√
2
3
η3 − η22 + η33 +

η38√
3

)
− ξ3 (162)

m34 =
v2

6

(
−
√

6η7 + 6η24 − 3η37 −
√

3η78

)
− ξ7

2
(163)

m35 =
v2

6

(√
6η6 + 6η25 + 3η36 +

√
3η68

)
+
ξ6

2
(164)

m44 = v2

(
η0 +

5η3√
6

+
η8√

2
+ η33 +

η38√
3

+ η44

)
+

√
3
2
ξ0 + ξ3 (165)

m45 = v2η45 (166)

m55 = v2

(
η0 +

5η3√
6

+
η8√

2
+ η33 +

η38√
3

+ η55
)

+

√
3
2
ξ0 + ξ3 (167)

the components of the charged matrix show up as
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mc
11 = v2

(
−2

√
2
3
η3 − 2η33 − 2η38√

3

)
− 2ξ3 (168)

mc
12 = v2

(√
2
3
η6 +

√
2
3
η7 + η36 + η37 +

η68√
3

+
η78√

3

)
+ ξ6 + ξ7 (169)

mc
22 = v2

(
2η0 + 5

√
2
3
η3 +

√
2η8 + 2η33 +

2η38√
3

)
+
√

6ξ0 + 2ξ3. (170)

The physical neutral Higgs bosons are linear combinations of the fields h
above, namely the eigenvectors of M2

neutral. The physical charged Higgs
fields are the eigenvectors of M2

charged respectively. For the eigenvalues of
the latter we find the eigenvalues and therefore masses of the charged bosons
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(171)
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4.5 Determination of stationary points with Gröbner bases

We initially intended to find the minima of three Higgs doublet potentials
via a Gröbner basis treatment. For a short introduction to the concept of
Gröbner Basis see appendix A. The procedure thereby is to compute the
Gröbner Basis of the polynomial ideal generated by the set of stationarity
equations in Ki. These polynomials are

fijk
∂V

∂Kj
Kk

∂V

K0
K0 +

∂V

Ki
Ki

2K2
0 −K2

i√
3
2
dabcKaKbKc − 2K3

0

for neutral stationary points. For the charge breaking stationary points we
consider the set of nine polynomials in Ki and u

∂V

Ki
+ u

∂

∂Ki
detK

detK

where u denotes the Lagrange multiplier.
Reduced Gröbner Bases are unique with respect to the underlying monomial
ordering. If we manage to find this basis in lexicographic order there is at
least one univariate polynomial if the polynomial ideal is zero-dimensional.
The set can now be brought in triangular form. Meaning, at the end of the
procedure it consists of triangular blocks where one equation is univariate in
a variable x1, the above one containing x1 and a further variable x2, the next
equation three variables, ad infimum. We can solve the univariate equation
for x1, reinsert the solution in the above equation to find x2, and proceed
to iterate moving up in the triangle. Because the polynomial degree is typ-
ically higher than three for involved systems as ours, one generally requires
numerical methods to obtain the zeros. We finally have to ensure the real
solutions fulfil K0 > 0 in order to describe a possible field configuration. For
charge breaking minima we need aditionally to ensure 2K2

0 −K2 > 0.
The great advantage of this method is that it is purely algebraic up to the
numerical solving of the triangular system. The number of complex solu-
tions is given by the multiplicity of the Gröbner basis system. In this way we
can check after applying the procedure whether or not a solution is missing.
The solutions can be checked finally by reinserting them in the initial set
of equations. The global minimum is the stationary point which provides
the lowest value for the potential. The Algorithms for Gröbner bases with
respect to several monomial orderings, triangularisation and numerical solv-
ing of triangular systems are implemented in the program package SINGULAR
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[35]. As we discuss in appendix A, in the worst case, the calculation time
for a Gröbner basis increases as doubly exponential with the number of vari-
ables. This turns out to be a severe handicap for our potential with nine
variables.
Several days of brute force arbitrary potential Gröbner basis calculations
completely saturate our computational capacities without any result. Thus
several simplifications and common tricks were implemented:

• First and foremost , the Gröbner bases should not be computed di-
rectly in lexicographical ordering but first in total degree ordering.
Afterwards the degree ordered basis can be transformed into the cor-
responding basis in lexicographic ordering by the so-called FGLM al-
gorithm.

• By arranging the order of the variables the calculation efficiency can
be marginally improved

• We made an attempt to calculate the Gröbner Basis over a field with
a non-zero characteristic. An example of this is Z/p where p is a
prime. The advantage therein lies in that the coefficients do not be-
come greater than p. It is possible to find the Gröbner bases over this
fields in a reasonable time. However we must note that they are of
no use in making statements about our model since we cannot trans-
late the solution nor the Gröbner basis over the field Z/p into their
corresponding Gröbner bases and solutions in Q.

• We must restrict ourselves to simple potentials. The problem we run
into thereby is that if one simplifies the potential too much, one has
to take care to ensure that continuous symmetries are not introduced
(see section 3.4). In this case the vacua get degenerated. Clearly, this
set does not provide a finite solution set. Naturally, this is required
for system solving with Gröbner bases.

Notwithstanding these modifications we were unable to calculate the Gröbner
bases of polynomials given by the stationarity conditions whether for neu-
tral stationary points nor for the charge-breaking case. We could calculate
some Gröbner bases for simplified systems with non-zero dimensional solu-
tion space which are useless for the mentioned reasons. For configurations
without stable points the Gröbner basis turns out to be equal to 1, providing
there is no result in this case.
The main problem remaining is the number of variables in combination with
the involved parameter space. With each step of the algorithm, they increase
the degree of the polynomials and blow up the number of coefficients. This
is due to their high computational memory reqirements - eventually result-
ing in a computational memory overload. There exist some approaches to
calculate Gröbner Basis via floating point methods, see for example [36],
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which are better equiped to deal with the growth of the coefficients. On the
other hand, these algorithms are a field of current research and due to their
relative infancy insufficiently stable. It is therefore not obvious whether or
not these methods are ahead of common numerical methods in their pre-
cision. Furthermoe, floating point Gröbner basis algorithms cannot handle
the problem of too many variables. The latter problem is associated with
many polynomial reduction steps.
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4.6 Determination of minima with numerical methods

In literature, minima are often evaluated by numerical methods. Unfortu-
nately, the explicit method is rarely, meaning never, denoted. The common
methods of numerical optimization do not necessarily provide the global
minimum of the analyzed function but only local ones. It is an unsolved
problem how to find securely all minima of a given function and especially
how to find the global one.
One lack of simple numerical optimization algorithms, usual gradient based
ones, is that they might get stuck in a local minimum so they are better
suited for local optimizations. We made this experience using the Mathematica
[37] built in functions FindMinimum where we could reproduce the local min-
imum K̃ = 0 for several potential configurations, but no further points. We
were also rather unsuccessful searching minima using other Mathematica
functions as NMinimize since the algorithms did not succeed in finding points
fulfilling the constraints. One has also to be carefull using such built in func-
tions, since it remains mostly unclear which steps were taken to achieve the
result.
In applied optimization, one makes often use of stochastical and heuristical
algorithms which are a kind of modifications of pure random search. More
details of this optimization techniques may be found in [38] and similar
textbooks. One method are simulated annealing algorithms which follow the
analogy of the physical process cooling down slowly a heated metal. In the
initial state, the molecules may be disordered in the crystal alignment, thus
its inner energy is not minimal. Heating up, the crystaline structure breaks
up and the molecules wander through higher energy states. By cooling
down slowly, the molecules have time to line up in the crystal lattice, thus
the system may reach a lower energy state than the initial one. Applied to
an optimization problem, the algorithm starts with an initial state in the
function space and considers a neighbouring state. The state may wander to
this neighbouring state, where the probability of reaching the other point is
given by the Boltzmann distribution. Thus, the chosen direction is mostly
downhill, but since sometimes also the upward direction is favoured, this
prevents the algorithm from getting stuck in a local minimum.
Simulated annealing algorithms are similar to genetic algorithms. This op-
timization technique is a so called “population based method” and makes
use of the analogy to biological evolution of a population. We start with an
initial population - a set of points in the function space - and the algorithm
creates therefrom a new generation. The new individuals have two parents
and evolve from cross-over of the parental genomes. This corresponds to
the exchange of single coordinates of the parental points. A part of the
new generation is created by random values which has its genetic analogy in
mutations. Every individual is attached to a fitness parameter that denotes
how good it describes a solution. An individual with bad fitness is less po-



38 4.6 Determination of minima with numerical methods

tent for the next reproduction than a fitter member of the population. Since
we had access to such an algorithm [39], we could test its applicability to
our problem.

Example We chose a quite arbitrary potential with parameters

Ẽ =



0.8 0.22 0.15 0.23 0.36 0.27 0.48 0.36 0.37
0.22 0.5 0.16 0.4 0.19 0.16 0.02 0.38 0.07
0.15 0.16 0.4 0.1 0.51 0.32 0.33 0.42 0.41
0.23 0.4 0.1 0.41 0.42 0.32 0.28 0.44 0.11
0.36 0.19 0.51 0.42 0.62 0.14 0.29 0.02 0.18
0.27 0.16 0.32 0.32 0.14 0.48 0.31 0.03 0.29
0.48 0.02 0.33 0.28 0.29 0.31 0.55 0.41 0.29
0.36 0.38 0.42 0.44 0.02 0.03 0.41 0.54 0.22
0.37 0.07 0.41 0.11 0.18 0.29 0.29 0.22 0.26


(172)

ξ0 = −1000 ξ1 = −37522.6 ξ2 = −27788.2 ξ3 = −90000
ξ4 = −49493.7 ξ5 = −42838.4 ξ6 = 12000 ξ7 = −120000
ξ8 = −39908.2 (173)

Our intent in making this choice is to reproduce the electroweak scale as a
minimum. Because our parameters fulfil the relations (110) - (114), this is
the case. The corresponding value of the potential in this point is

Vew = −1.72255 · 109 GeV4 (174)

Furthermore this potential is explicitely CP violating.
We impose (69) and (67). The former is an equality constraint and the
latter an inequality. We let the algorithm [39] run with the potential with
parameters (172) and (173). If we find minima with this procedure, these
minima correspond to charge breaking vacua. The initial population, which
is the number of starting points, is set at 300 individuals. Starting with
larger populations may increase the accuracy of the result. This however
may slow down the calculation time. Some results accurately satisfying the
constraints were presented in table 1. Naturally, not every run leads to a
useful result. In some attempts, the deviation from the equality constraint
does not converge to zero at all.
The solutions for neutral minima are more difficult to achieve if we impose
both (70) and (67) as equality constraints. The algorithm spends most of
the calculation time finding points which fulfil the constraints. We therefore
eliminate one variable, namely by replacing the variable K0

K0 =
1√
2

√
K2

1 +K2
2 +K2

3 +K2
4 +K2

5 +K2
6 +K2

7 +K2
8 . (175)
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run 1 run 2 run 3 run 4
K0 264.64 326.67 338.64 261.02
K1 -63.13 -30.54 -58.49 87.36
K2 -55.25 -132.12 -69.57 107.84
K3 -146.53 78.00 -147.28 36.45
K4 -83.10 -85.30 -117.56 -35.53
K5 64.03 -31.91 -35.68 19.36
K6 -12.64 -33.35 -30.26 80.34
K7 -31.87 140.53 -51.32 -56.16
K8 -12.73 -20.46 172.20 123.13
C1 99222 159375 151114 89271
C2 0.02 4.87 5.24 0.32
V 22431420 -13290842 23413042 -5960710

Table 1: Charge breaking minima of a the potential with values (172),(173),
achieved with the evolutionary algorithm [39]. C2 denotes the deviation
from the constraint detK = 0 times 10−11. C1 is the value of 2K2

0 −K2 in
GeV4. The values of the potential are given in GeV4, the values of K0−K8

in GeV2.

With this change, (67) is fulfilled automatically and we are left with one
constraint. With a single constraint and an initial population of 300 indi-
viduals we find in almost every run minima within an acceptable accuracy
tolerance. Our results are presented in table 4.6.
In this example we find a coexistence between charge breaking and neutral
minima, where the charge breaking minima can be situated below neutral
ones. This would consolidate the statements of [40], in which charge breaking
minima below neutral ones in three Higgs doublets models were predicted.
However we find that the resulting points do not fulfill the stationarity
equations (??) and (102) satisfactoriliy. To improve the results one could
use a local optimization method to find real stationary points.
Regarding the calculation efficiency, we note that a single solution of the
presented accuracy is reached within minutes. Nevertheless, an extensive
search for minima using this method may take some time: Since it is not
guaranteed to find all minima nor to find the global minimum in special,
the probability of finding the global minimum is increased by letting the
algorithm run as many times as possible. Treating the case of a single three
Higgs-doublet potential in full depth, which includes parameter scans for
several parameters, remains therefore a time-consuming affair. Since we
have no severe constraints on the parameter space, the usability of such an
extensive treatement for single cases is rather questionable.
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run 1 run 2 run 3 run 4
K0 21.02 23.95 17.26 36.00
K1 8.13 -3.33 -0.42 2.37
K2 3.25 2.60 -1.03 26.32
K3 16.46 -0.07 -14.31 30.31
K4 -16.12 15.81 -1.50 4.01
K5 -4.21 -22.10 10.40 -14.34
K6 -7.93 -13.03 -13.12 -23.33
K7 -9.70 13.60 -10.27 2.82
K8 10.06 -5.99 1.13 14.17
C1 1.60 0.43 1.24 4.91
V -251944 -1348242 1974492 -4350011

run 5 run 6 run 7 run 8
K0 38.79 60.70 19.84 14.55
K1 -18.49 8.64 -8.07 13.02
K2 3.37 28.57 13.23 6.03
K3 26.61 45.64 -22.00 9.93
K4 16.68 -25.79 -1.07 7.91
K5 25.13 -14.64 -4.36 -6.36
K6 -5.20 -26.39 2.01 2.08
K7 -30.76 14.44 3.33 -3.20
K8 -8.05 51.10 5.25 -1.08
C1 5.56 1.90 0.01 2.47
V 217910 -7463968 1551203 -1231212

Table 2: Neutral minima of a the potential with values (172),(173), achieved
with the evolutionary algorithm [39]. C1 denotes the deviation from the
constraint detK = 0 times 1011. 2K2

0 −K2 = 0 is implemented from the
beginning by inserting (175). The values of the potential are given in GeV4,
the values of K0 −K8 in GeV2.
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5 CP symmetry in three Higgs-doublet models

CP transformation is the product of charge conjugation and parity trans-
formation. The most general allowed CP transformation can be defined by
requiring the gauge-kinetic terms of the Lagrangian to be invariant under it.
The standard or special CP transformation of the gauge, Higgs and fermion
fields reads (see for example [41], [23]).

(CPs)Wµ(t, ~x)(CPs)† = −W T
µ (t,−~x) (176)

(CPs)Bµ(t, ~x)(CPs)† = −Bµ(t,−~x) (177)

(CPs)ϕa(t, ~x)(CPs)† = ϕ∗a(t,−~x), a = 1, 2, 3 (178)

(CPs)ψi(t, ~x)(CPs)† = γ0 S(C)ψ̄i(t,−~x), i = 1, . . . Nf . (179)

Where S(C) := i γ2γ0 denotes the Dirac matrices for charge and parity
conjugation and Wµ = σa

2 W
µ
a . The denomination special reproduces the

fact that a definition of CP is only useful in a particular basis of the Higgs
doublets. Taking the Yukawa terms of the Lagrangian into account, the
choice of basis plays a crucial role in the definition of CP symmetry, as we
shall see in the following sections.
A generalized CP transformation may involve a unitary transformation of
the Higgs doublets and the fermions [42]

(CPg)ϕa(t, ~x)(CPg)† = Uϕabϕ
∗
b(t,−~x) (180)

(CPg)ψi(t, ~x)CPg = Uψij φ̄
T
j (t,−~x), (181)

with Uϕ ∈ U(3) and Uψ ∈ U(Nf ).
These matrices are restricted by requiring a twofold application of CP, in
order to reproduce the original fields up to a phase. From unitarity one can
deduce that only the cases U = UT and U = −UT are realizable [43], [44].
We consider in the following only the case U = UT which corresponds to
standard CP transformations in the suitable basis.
Adapted to the orbit variable formalism of the three Higgs-doublet model,
we find K̃ transforms under standard CP transformations as

Ki(t,x) CP−→ Ki(t,−x) for i = 0, 1, 3, 4, 6, 8 (182)

Ki(t,x) CP−→ −Ki(t,−x) for i = 2, 5, 7. (183)

So we can consider CP transformations as a deflection on the five-dimensional
plane spanned by {K1,K3,K4,K6,K8} which we denote by R{2,5,7}. For
generalized CP transformations, an additional rotation might occur
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K0(t,x) −→ K0(t,−x)
K(t,x) −→ R(Uϕ)R{2,5,7}K(t,−x), (184)

where R(Uϕ) ∈ SU(3).
In three Higgs doublet models we find several possibilies by which CP in-
variance is broken:

• An explicit breaking in the scalar potential.

• A spontaneous breaking through non-vanishing vev.

• CP breaking in the Yukawa interactions.

In the rest of this chapter, we discuss these possibilities. The main focus is
put on the construction of CP violation indicating invariants in explicit and
spontaneous CP violation.

5.1 Explicit CP violation and CP-invariants

A Higgs potential is explicitly CP-violating if it is not invariant under any
CP transformation (180), (181). In terms of the orbit variable parameters
this means, no R(Uϕ) ∈ SU(3) exists such that

ξ = R(Uϕ)R{2,5,7}ξ and E = R(Uϕ)R{2,5,7}ER{2,5,7}R(Uϕ)T . (185)

If CP symmetry is broken only by quadratic terms of the potential, this is
called soft symmetry breaking.
Due to the reparametrization freedom given by SU(3)ϕ, it is generally diffi-
cult to ascertain whether or not the potential conserves CP symmetry. These
transformations may generate artificial phases which change sign under CP
transformation. If all couplings of the fields in (6) are real, the potential is
clearly invariant under the standard CP transformation. Gunion and Haber
showed in [18] that for every CP conserving potential there exists a basis
where all parameters are real.
Each term in the potential containing odd powers of the variables K2, K5

and K7 changes sign under the standard CP transformation. For three Higgs
fields we have at most 21 CP-odd parameters in the potential which lead
to standard CP-odd terms in the potential. We find that there are five
SU(3)ϕ rotations between CP-even and CP-odd directions which allow for
the simultaneous reduction of five CP-odd parameters, leaving 16 remaining.

By similar considerations, we find that the number of CP violating phases
for generic n Higgs-doublet model is
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nCP = 2 · n
2 − n

2︸ ︷︷ ︸
CP-odd ξi and ηi

+
n2 − n

2

(
n2 + n

2
− 1
)

︸ ︷︷ ︸
CP-odd ηij

− n2 + n

2
− 1︸ ︷︷ ︸

SU(n) reparametrization

=
n2(n2 − 1)

4
− (n− 1) . (186)

Because the parameters of the potential are already real in our formalism,
we are unable to check for CP violation by simply considering the complex
phases. Other checks indicating CP violation must be employed. We find
these alternative CP violation indicators in the SU(3)ϕ invariants which
change sign under standard CP transformation. So the question is there-
fore, which invariants can be built out of the parameters ξ̃, η̃ and Ẽ?

As a primer, we need to be aware of the behavior of the parameters under
SU(3)ϕ transformations. This behavior is described by (77).
Let us reiterate these properties. The parameters η0, ξ0, corresponding to the
singlet K0 do not transform at all. η and ξ undergo a octet transformations
corresponding to K. Finally, the symmetric matrix E transforms like the
octet representations

(8⊗ 8)S = 1⊕ 8⊕ 27. (187)

The decomposition of the corresponding representations is found to be

E1 = tr E (188)
E8 = dijkηjk (189)

E27 = ηij − δij 1
8
ηkk − 3

5
dijkdklm ηlm. (190)

Finding basis invariants means constructing SU(3) singlets from the afore-
mentioned SU(3)-tensors which we henceforth refer to as fundamental ten-
sors. However, we are not interested in all possible invariants, but only those
that change sign under standard CP. If such an invariant is non-zero, the
potential cannot be CP conserving. Here we follow a similar treatment of
CP violation, as it was done before for two Higgs doublet models in [67],[18],
[23], [47]. First steps of treatments of basis invariant CP-odd quantities of
three Higgs-doublet potentials were presented in [24] and [48].

For the sake of being aware of its structure, consider the following. A po-
tential in the field formalism with real only parameters is standard CP con-
serving. We translate this potential to our gauge invariant orbit variable
description:
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ξT = (·, 0, ·, ·, 0, ·, 0, ·)
ηT = (·, 0, ·, ·, 0, ·, 0, ·)

E =



· 0 · · 0 · 0 ·
0 · 0 0 · 0 · 0
· 0 · · 0 · 0 ·
· 0 · · 0 · 0 ·
0 · 0 0 · 0 · 0
· 0 · · 0 · 0 ·
0 · 0 0 · 0 · 0
· 0 · · 0 · 0 ·


, (191)

where the dots denote arbitrary entries.
In this respect, the main idea in the construction of our invariants is to
construct separate bases of the CP-even and CP-odd parameter space from
the fundamental tensors. This would allow to turn E, η and ξ into the above
form in which CP behavior is imposed by standard CP transformation.
We find the number of invariants of increasing order by decomposing SU(3)
representations arising from octet tensor products. Young tableaus are a
useful tool in realizing these decompositions. See for example [45], [46]. For
the explicit tensor representation, we used several SU(3) identities, listed in
appendix B and derived in [49], [50], [51].
To avoid lengthy formulae, we use the notation

dijk aj bk = (a ∗ b)i, (192)
fijk aj bk = (a ∧ b)i, (193)

ai bi = a b. (194)

Furthermore, we define
e ≡ E8. (195)

Let us turn our attention to the fundamental octets. Using these, we can
build the invariants

I1 = (η ∧ ξ) e (196)
I2 = ((η ∧ ξ) (e ∗ e) (197)
I3 = ((η ∧ (ξ ∗ ξ)) e (198)
I4 = ((η ∗ η) ∧ ξ) e (199)
I5 = ((η ∗ ξ) ∧ (η ∗ η)) (ξ ∗ ξ) (200)
I6 = ((η ∗ e) ∧ (η ∗ η)) (e ∗ e) (201)
I7 = ((ξ ∗ e) ∧ (ξ ∗ ξ)) (e ∗ e). (202)
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It is easy to convince oneself that these quantities change sign under stan-
dard CP transformation, and that they all vanish if the fundamental tensors
have the form (191).
Additionally, we find that if all invariants of this set vanish, the existence of
a basis in which η, ξ and e are invariant under standard CP transformation
is ensured.
To prove this, we recall that we can represent the octet η as

ηi λ
i =

η3 + η8√
3

η1 − i η2 η4 − i η5

η1 + i η2 −η3 + η8√
3

η6 − i η7

η4 + i η5 η6 + i η7
2 η8√

3

 . (203)

Immediately we recognize that we can eliminate six entries of η by SU(3)
and find that

ηi λ
i '


η′3 + η′8√

3
0 0

0 −η′3 + η′8√
3

0

0 0 2 η′8√
3

 (204)

in the adequate basis.
The form of (204) is unaltered by the remaining SU(3) transformations

T3 = ei θ3
λ3
2 (205)

T8 = ei θ8
λ8
2 . (206)

Therefore we are able to use these two transformations to ensure ξ′5 = ξ′7 = 0.
We make a case distinction in this basis. The main distinction is between
ηi λ

i having non-degenerate eigenvalues and ηi λ
i having two degenerate

eigenvalues.

ηiλ
i has different eigenvalues: This means η3 6= 0 and η3 6= 1√

3
η8.

• If ξ1 6= 0, ξ4 6= 0 and ξ6 6= 0, I5 = 0 implies

1
2
η3

(
η3

2 − 3η8
2
)
ξ2ξ4ξ6 = 0, (207)

thus ξ2 = 0.

We plug this result into I1 = 0 and solve for e2. This yields

e2 =
−e5η3ξ4 −

√
3e5η8ξ4 − e7η3ξ6 +

√
3e7η8ξ6

2η3ξ1
. (208)

From I4 = 0, we get
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e5 =
e7ξ6

ξ4
. (209)

Requiring these results to be consistent with I4 = 0 we find

e7 = 0. (210)

So e2 and e5 are also null. Standard CP invariance of the octets is
restored.

We apply the same procedure to the other configurations within this case
but avoid writing the results in the same detail as above.

• If ξ1 = 0 , ξ4 6= 0 and ξ6 6= 0, then I5 = 0 implies ξ2 = 0. I1 = 0,
I3 = 0 and I4 = 0 yield the existence of a basis with e2 = e5 = e7 = 0.

• If ξ4 = 0, ξ1 6= 0 and ξ6 6= 0, we use T3 and T8 to get a basis with
ξ2 = 0. Again, I1 = 0, I3 = 0 and I4 = 0 yield the existence of a basis
with e2 = e5 = e7 = 0.

• If ξ1 = 0, ξ4 = 0 and ξ6 6= 0, we can use T3 and T8 to get ξ2 = 0. And
also here, I1 = 0, I3 = 0 and I4 = 0 yield the existence of a basis with
e2 = e5 = e7 = 0.

• If ξ4 = 0, ξ6 = 0 and ξ1 6= 0, we use T3 and T8 to get ξ2 = 0 and e5 = 0.
I1 = 0 and I6 = 0 either give e2 = 0 and e7 = 0. Otherwise we have
a remaining freedom in the basis choice, allowing for a rearrangement
such that e2 = 0 and e7 = 0 hold.

• If ξiλi is diagonal and has non-degenerate eigenvalues, we use T3 and
T8 to get e5 = e7 = 0. From I6 = 0 we deduce e2 = 0 otherwise we
have additional freedom in the basis choice, allowing us to get e2 = 0.

ηiλ
i has two equal eigenvalues: This means η3 = 0 or η3 = ±η8.

If η3 = 0, (204) remains unaltered by basis transformations with

T1 = ei θ1
λ1
2 and (211)

T2 = ei θ2
λ2
2 . (212)

We can use these rotations to get ξ2 = ξ1 = 0. Further, we use again T3 and
T8 to eliminate ξ5 and ξ7 in this basis.
If η3 = ± 1√

3
η8, we can eliminate ξ1 and ξ2 to this form using
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T4 = ei θ4
λ4
2 (213)

T5 = ei θ5
λ5
2 , (214)

T3 and T8 without altering the form of (204).
We consider all configurations of the remaining parameters in this basis.

• If ξ4 6= 0 and ξ6 6= 0. I1 = 0, I3 = 0 and I2=0 imply e2 = 0, e5 = 0
and e7 = 0.

• If ξ4 6= 0 and ξ6 = 0, we use T3 and T8 to achieve e7 = 0. I1 = 0 and
I2 = 0 guarantee that there exists a basis with e2 = 0, e5 = 0 as well.

• If ξ4 = 0, ξ6 = 0 and λiξi has non-degenerate eigenvalus, suitable T3

and T8 rotations eliminate e5 and e7. All invariants except for I7 are
automatically zero. I7 = 0 implies e2 = 0.

• If λiξi is diagonal, has two equal eigenvalues and is not degenerate in
the same way as ηiλi. This means, if ξ3 = 0 then η3 = ± 1√

3
η8 and

vice verse. In this case suitable T3 and T8 rotations eliminate e5 and
e7. All invariants except for I7 are automatically zero. I7 = 0 implies
e2 = 0.

• λiξi is degenerate in the same way as λiηi, i. e. if ξ3 = 0 then η3 = 0
and if η3 = ± 1√

3
η8 then ξ3 = ± 1√

3
ξ8. We can chose T3, T8 and T1, T2

(T4, T5 respectively) so that e2 = e5 = e7 = 0. All invariants vanish
automatically.

We note that in all of these cases only four invariants are used to define the
CP-odd parameters of η, ξ and e.
The argumentation runs along the same lines if we interchange the octets
and thus there exists a basis in which η, ξ and e are invariant under standard
CP transformation if I1 - I7 are null.
These considerations can be used to construct a basis where all parameters
are in the form (191).

We turn now our attention to the remaining CP-odd parameters in the
matrix E. We assume that a basis exists where ηiλ

i has non-degenerate
eigenvalues, ξ2 = ξ5 = ξ7 = 0 holds and none of the pairs ξ1 and ξ4, ξ4

and ξ6, ξ1 and ξ6 are simultaneously zero. Furthermore, all invariants I1-I7

vanish such that e has no CP-odd entries.
In this case, we can span a CP-even space by

S = {η, ξ,η ∗ η, ξ ∗ ξ,η ∗ ξ} (215)
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and a CP-odd one by

A = {η ∧ ξ,η ∧ (ξ ∗ ξ) , ξ ∧ (η ∗ η)} . (216)

S and A have full rank and can be used to eliminate the CP-odd parameters
of E. Therefore, we build the contractions s E a with s ∈ S and a ∈ A.

I8 = ηE(η ∧ ξ) (217)
I9 = ηE((η ∗ η) ∧ ξ) (218)
I10 = ηE((ξ ∗ ξ) ∧ η) (219)
I11 = ξE(η ∧ ξ) (220)
I12 = ξE((η ∗ η) ∧ ξ) (221)
I13 = ξE((ξ ∗ ξ) ∧ η) (222)
I14 = (η ∗ η)E(η ∧ ξ) (223)
I15 = (η ∗ η)E((η ∗ η) ∧ ξ) (224)
I16 = (η ∗ η)E((ξ ∗ ξ) ∧ η) (225)
I17 = (ξ ∗ ξ)E(η ∧ ξ) (226)
I18 = (ξ ∗ ξ)E((η ∗ η) ∧ ξ) (227)
I19 = (ξ ∗ ξ)E((ξ ∗ ξ) ∧ η) (228)
I20 = (ξ ∗ η)E(η ∧ ξ) (229)
I21 = (ξ ∗ η)E((η ∗ η) ∧ ξ) (230)
I22 = (ξ ∗ η)E((ξ ∗ ξ) ∧ η) (231)

If I8 - I22 are all equal to zero, the CP-odd parameters in E are vanishing.
Therefore, the potential is explicitely CP conserving in this case.
Notwithstanding there remain only 12 phases in E to fix, having already
defined 3 of them in e, we need the whole set of 15 invariants I8 - I22. This
is for the the reason that we need different sets of 12 invariants in the cases
where ξ4, ξ6 or ξ1 vanish individually. Doing the case distinction explicitely,
we find:

• If ξ1 6= 0, ξ4 6= 0 and ξ6 6= 0, all CP-odd parameters in E have to be
zero in order to reproduce the vanishing of the invariants I8-I16 and
I20-I22. The invariants I17-I19 are redundant,

• if ξ1 = 0, ξ4 6= 0 and ξ6 6= 0, we do not need to consider the invariants
I20-I22 to define the CP-odd parameters of E,

• if ξ4 = 0, ξ1 6= 0 and ξ6 6= 0, we can neglect the invariants I20-I22,

• if ξ6 = 0, ξ1 6= 0 and ξ4 6= 0, I14-I16 are redundant.
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Naturally, we can interchange the octets η, ξ and e in this procedure and
derive the same result if S and A have full rank in the corresponding case.
If S and A do not have full rank for any combination of η, ξ and e, the 15
invariants above for the respective cases are not sufficient to define the CP
symmetry of the potential.
In this case, we have to take higher order invariants into account. Our
suggestion for the case ξ = η = e = 0, is to build invariants in the same
manner as I1 - I7, using the octets

e{2}i = dijkE2
jk (232)

e{3}i = dijkE3
jk (233)

e{4}i = dijkE4
jk. (234)

If we achieve to construct a basis in the manner A, S with these octets,
the CP symmetry of E can be defined using invariants as I8 - I22 with the
respective octets.
Because the invariants constructed out of the octets above, for example

(e{2} ∧ e{3})Ee{2} (235)

are at least of order eight in ηij , we were unable handle computationally
these high ordered invariants. Therefore we cannot give a concise set of
invariants for these cases.
The CP behavior of a potential is fully defined over the corresponding in-
variants I1 − I22 for the cases where we can construct basis sets A and S
with at least one of the pairs {η, ξ}, {η, e} or {ξ, e}.

5.2 Invariants indicating spontaneous CP violation

In section 2.3, we discussed the structure of spontaneous CP violating ground
states. In terms of gauge invariant orbit variables, we find a ground state
K is spontaneously breaking CP if

K 6= R(Uϕ)R{2,5,7}K (236)

Having found the adequate CP basis, we can decide by the same considera-
tions done for the explicit CP violation, if the ground state conserves CP or
not. Namely, we have to check that the octet K of the vacuum lies in the
CP-even space spanned by the corresponding set S
In the generic case where (215) and (216) span this basis,

(ξ ∧ η)K = 0 (237)
(ξ ∧ (η ∗ η)) K = 0 (238)
(η ∧ (ξ ∗ ξ)) K = 0 (239)

needs to be fulfilled for a CP-conserving vacuum.
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5.3 Yukawa couplings with three Higgs-doublets

The Yukawa term in the Lagrangian describes the interactions of fermion
and Higgs fields. For several Higgs doublets this Lagrangian is

LY = −Q̄iL
(
ΓDijaϕaDjR + ΓUijaϕ̃aUjR

)− L̄iLΓlijaϕaljR + h.c. (240)

The common notation is used with Qi denoting the SU(2) quark dou-
blets (u, d)T , (c, s)T , (t, b)T and Dj and Uj the down- and up-type sin-
glets (d, s, b), (u, c, t) respectively. Li denotes the lepton doublets (νe, e)T ,
(νµ, µ)T , (ντ , τ)T , and lj the singlets (e, µ, τ). The subscripts L and R are
standing for the projection PL/R = 1∓γ5

2 on the left- and right-handed com-
ponents of the fields. Finally, ϕ̃a := i σ2ϕa are the doublets with y = −1

2 ,
where σ2 is the usual Pauli matrix. The Yukawa-coupling matrices Γa do
not need to be hermitian. For non-vanishing vevs of the neutral Higgs fields,
the quark fields acquire their mass from

MU,D = 〈φa〉ΓU,Da . (241)

By two unitary matrices MU,D can be diagonalized

Mdiag
U,D = TU,DL MU,DT

U,D
R

†
. (242)

In the Standard Model with just one Higgs doublet the mass eigenstates of
the quarks become

UmL/R = TUL/RUL/R, Dm
L/R = TDL/RDL/R. (243)

The Yukawa couplings are diagonal too in this basis.
The bi-diagonalization matrices TU,DL/R enter in the charged currents

J+
µ = ŪLγµDL = ŪmL γµVD

m
L (244)

through the unitary matrix V := TUL T
U†
L . This matrix, the so-called CKM

matrix, gives rise to the only source of CP violation in the SM. This is due
to the fact that it contains a complex phase which cannot be absorbed by
field redefinitions [52]. As common, things are getting more complicated
with several Higgs doublets. In general we cannot bi-diagonalizeMU,D and
the sum of Γa at once meaning by the same two unitary matrices. So there
occurs mixing between the Higgs fields in the Yukawa interactions. In clear
contradiction to experiments flavor changing neutral currents (FCNC) are
unsuppressed at tree-level.
One way to suppress the FCNC is to give the exchanged neutral Higgs bosons
high mass terms of O(10 TeV) [53] which is considered as a rather unnatural
possibility.
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Glashow and Weinberg [54] showed that the only way to achieve neutral
flavor conservation is to allow only one Higgs doublet to couple to quarks of
a given charge. This requirement leaves still two possibilities: Either, just
one doublet couples to the quarks, or one field, for example φ1, couples to
the down type quarks and another, φ2, couples to the up type quarks.
We can enforce this behavior by imposing two discrete symmetries on the
potential. See for instance [55]):

φa −→ −φa for a > 2 (245)
φ2 −→ −φ2 and UR −→ −UR (246)

Imposing such a reflection symmetry on a scalar potential with two Higgs
doublets inhibits the appearance of spontaneous breaking of CP: We remem-
ber from section 2.3, the form of a CP violating vacuum involves a complex
phase between the vaccum states of two doublets. Assuming the second
doublet has a purely imaginary vev6, we can check the transformation

(CP)ϕ1(t, ~x)(CP)† = ϕ∗1(t,−~x) (247)
(CP)ϕ2(t, ~x)(CP) = −ϕ∗2(t,−~x) (248)

leaves unchanged interactions of the Higgs fields with the gauge bosons.
Since there are no terms in the potential containing odd numbers of one
doublet, CP is also a symmetry of the potential. By extending this CP
transformation on the fermion sector which involves a change of sign in the
transformation of UR, we can arrange invariance under this transformation
in the Yukawa sector too.
With three Higgs doublets we can arrange neutral flavour conservation but
still keep the door open for spontaneous CP violation. This model was
proposed by Weinberg in 1976 [56] and in literature is referred to as Weinberg
model.

V =µ11φ
†
1φ1 + µ22φ

†
2φ2 + µ33φ

†
3φ3 + λ11,11(φ†1φ1)2 + λ22,22(φ†2φ2)2 + λ33,33(φ†3φ3)2

+ λ11,22(φ†1φ1)(φ†2φ2) + λ11,33(φ†1φ1)(φ†3φ3) + λ22,33(φ†2φ2)(φ†3φ3)

+ λ12,21(φ†1φ2)(φ†2φ1) + λ13,31(φ†1φ3)(φ†3φ1) + λ23,32(φ†2φ3)(φ†3φ2)

+ |λ12,12|
(
eiα1(φ†1φ2)2 + e−iα1(φ†2φ1)2

)
+ |λ13,13|

(
eiα2(φ†1φ3)2 + e−iα2(φ†3φ1)2

)
+ |λ23,23|

(
eiα3(φ†2φ3)2 + e−iα3(φ†3φ2)2

)
(249)

6This can be arranged always by U(1) gauge transformations
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Explicit CP violation occurs if the complex phases αi are non-vanishing.
The doublet φ1 couples to down type quarks while φ2 couples to the up
type quarks due to the implemented discrete symmetry (246). The third
doublet which couples not to the quarks may couple to the lepton sector.
Such a model does not necessarily explain or reproduce the Standard Model
CP violation behavior. Namely, if CP is broken only spontaneously, we
cannot reproduce a complex phase in the CKM matrix. We scetch the proof
of this statement in the following: By imposing neutral flavor conservation
and a CP invariant Lagrangian before spontaneous symmetry breaking7, we
imply the Yukawa couplings in the Lagrangian are real. The corresponding
matrices Γ1 and Γ2 are though diagonalizable by orthogonal matrices. An
eventual relative phase in the vevs of the Higgs fields may be absorbed by
redefining the respective quark field. Therefore the CKM matrix turns out
to be real. This was shown in [41].
Although, CP violation phenomena are possible. As the Yukawa couplings
of charged Higgs fields do not need to be real, charged Higgs exchange may
occur. With charged Higgs exchange, electric dipole moments for individual
quarks or leptons are coming along, giving rise to a measurable electric
dipole moment of the neutron.
Requiring consistency with observable CP violation parameters εK and the
ratio ε′

ε of Kaon mixing [14], the parameter space can be constrained as the
mass of the lightest charged Higgs influences the result. This consistency
may be achieved with reasonable values MH ≥ 40 GeV but by doing so one
runs into conflict with the electric dipole moment of the neutron. Consid-
ering the direct contribution from up- and down-quark dipole moments du,
dd, which is

dN =
1
3

(4dd − du) , (250)

a lower bound on the neutron dipole moment can be derived by expressing
du and dd in terms of the εK . As a value for this lower bound

dN ≥ 5× 10−25e cm (251)

was estimated in [57]. This is already incompatible with the experimental
upper bound of dN < 2.9× 10−26e cm [14].
Additionally there is also a contribution from neutral Higgs exchange through
gluonic operators [58] of the order O(10−25)e cm [59], exceeding the exper-
imental upper bound.
The tendency for a too large value for dN is a main argument against the
Weinberg model [60],[61], [62]. The problem may be cured by introducing
explicit CP-violation in the scalar potential. Although it seems somehow
unlikely to put in CP violation by hand to explain CP violation in the
Standard Model CKM mechanism.

7This modification of Weinberg’s model is sometimes referred as Branco’s model [41]
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If one does not restrict the model to fit εK one cannot completely abandon
three Higgs-doublet models. The additional possibilities of breaking CP
in these models could for example provide a way to explain the baryon
asymmetry of today’s universe.
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6 Conclusions and outlook

In this thesis, we used nine gauge invariant Higgs field bilinears to describe
the potential of three Higgs-doublet models. These gauge invariant func-
tions form a nine-dimensional vector, consisting of singlet and an octet of
SU(3) of what we made use by formulating the stationarity conditions of
the potential. We found that in neutral stationary points, the antisymmetric
SU(3) product of the gradient of the potential with the octet vanishes and
the gradient with respect to all nine variables is kind of orthogonal to the
nine-dimensional vector. This formulation is useful since the gauge invariant
formulation of stationarity involves irregular constraints. In the discussion
of CP symmetries of three Higgs-doublet models, we derive a systematic
and basis independent way to decide if a potential is invariant under CP
transformations. This method can be enhanced to decide whether or not
CP is spontaneously broken by the ground state.
The results and methods derived in this thesis could be used to explicitly
calculate stable points of a three-Higgs doublet potential using more pow-
erfull computational methods than ours - including Gröbner bases or not.
In the treatement of CP invariants, it would be interesting to check if there
is a minimal set for three Higgs-doublet potentials which can be used to
determine the CP symmetry of the potential and its ground state.
Concerning the success of our thesis, we have to claim that we have failed in
our original intent of finding all minima of a given potential by algebraical
methods. We found our considered methods being not sufficient to achieve
this quite ambitious aim. Nevertheless, the procedure was very instructive,
giving some insight in the - to us - rather unfamiliar topics of computational
algebra and optimization theory.
The topic of three Higgs-doublet models turned out to be very instructive
also from a more direct physical point of view. The possibilities of spon-
taneous breaking the electroweak gauge group SU(2)L × U(1)Y and also
the discrete CP symmetry provided by these models deepened our under-
standing of these mechanisms and aroused curiosity for cosmological topics
such as baryogenesis and Standard Model extensions. By searching the CP-
invariants, we needed quite some knowledge about group theory, especially
SU(3) and got a fascinating impression of another important tool in particle
physics.
Resuming, the topic overall bid a nice playground for applying several con-
cepts of computational methods and particle physics, demanding further
some endurance and lots of creativity.
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A Gröbner Bases

The concept of Gröbner bases is a powerfull tool in computational commu-
tative algebra. It was developed mainly by B. Buchberger in 1965 within
the scope of his Ph. D. Thesis and named after his supervisor Wolfgang
Gröbner [63]. In condensed version, a Gröbner basis is a special system of
generators of an algebraic ideal. We will give here a slightly deeper explana-
tion of this concept and refer the interested reader for example to the books
of Robbiano and Kreuzer for an extensive treatment of the subject [64], [65]
or also [66].
To scetch the Buchberger algorithm which allows to find the Gröbner basis
for any ideal, we need to remember some definitions.

Definition 1 (Ring) A ring is a set (R,+, ·) where (R,+) is an Abelian
group and (R, ·) is a monoid, meaning R is closed under multiplication, ful-
fils associativity, there exists an identity element, and (R,+, ·) is distribu-
tive. Further a ring is called commutative if commutativity is fulfilled for
multiplication too.

In the following we deal only with commutative rings.

Definition 2 (Ideal) A subset I of a ring R is called ideal if it is an
additive subgroup of R and R · I ⊆ R.

Definition 3 (Polynomial Ring) The set of polynomials in n indetermi-
nants over the field K we denote by K [x1, x2, x3, . . . , xn] ≡ K [x] and call it
a Polynomial Ring.

In a polynomial ring we can easily generate an ideal with a finite set F =
{f1, f2, . . . , fn} ⊂ K [x] by

〈F 〉 =

∑
fi∈F

fi · ri | ri ∈ K [x]

 (252)

The single summands of a polynomial are called monomials, for example
4x4 y is a monomial in Q [x, y]. It turns out to be very important to put an
ordering on them.

Definition 4 (Monomial ordering) A total ordering � on the set of mono-
mials M is called monomial ordering if it satisfies

• a � b⇒ a c � b c ∀ a, b, c ∈M
• 1 � m ∀m ∈M
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Some common orderings are

• Lexicographic ordering The indeterminants are ordered decreas-
ingly, x1 �lex x2 �lex . . . �lex xn. The monomials are ordered ac-
cording to their power in x1, then in x2, etc. E. g. in Q [x, y] we find
2x3 y �lex 3x y5

• Degree-lexicographic ordering The monomials are ordered consid-
ering first their total degree and respecting their lexicographic ordering
if the total degree of two monomials is the same. E. g. in Q [x, y] we
find 3x y5 �deg 2x3 y

The highest monomial of a polynomial f with respect to a ordering is called
leading monomial LM(f). The corresponding leading power product
and leading coefficient is denoted by LP (g) and LC(f) respectively such
that LM(f) = LC(f) · LP (f).

Definition 5 (Gröbner basis) Let I be an ideal. A set G = {g1, g2, . . . , gn} ⊆
I is called Gröbner basis of I with respect to the underlying monomial or-
dering if the leading monomials of G generate the the initial ideal of I, i.e.

〈LM(g1), . . . , LM(gn)〉 = 〈LM(I)〉 .
Definition 6 (Reduction) Let f, g ∈ K [x]. f is called reducible mod-
ulo g if any monomial t in f is a multiple of the leading monomial of g, i.e.
t = LM(g) · u, u ∈ K [x]. f reduces to h modulo g where h = f − u · g .

We take for this and further examples the set of polynomials F = {f1, f2, f3}
in Q [x, y] with lexicographic ordering where

f1 = 2x2y3 − 5xy + y

f2 = 4x3y + 3x
f3 = 2x− y + 1.

A possible reduction of f1 modulo f3 is

h = f1 − xy2f3 = xy3 − xy2 + xy3 + y.

But as well we can reduce f1 modulo f3 to

h′ = f1 +
5
2
f3 = 2x2y3 − 5

2
y2 +

7
2
y.

We find the normal form normf(f, F ) of f modulo a set F of polynomials
by reducing g subsequently with every polynomial of the set until no further
reduction is possible. In algorithmic form this reads

Q := F
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while ∃ p ∈ Q which is reducible modulo Q\{p} do
Q := Q\{p}
h := normf(p,Q)
if h = 0 then
Q := Q ∪ {h}

end if
end while
return Q

Because the reduction steps are not unique as we have seen in the above
example, a normal form is in general not unique.

Definition 7 (S-Polynomial) Let f, g ∈ K [x].

spol(f, g) =
lcm (LP (g)LP (f))

LP (g)
g − LC(g)

LC(f)
lcm (LP (g)LP (f))

LP (f)
f

is called S-Polynomial.

lcm denotes the least common multiple.
For example we find the S-Polynomial for the polynomials f1 and f2 in our
set F

spol(f1, f2) = x f1 − 1
2
y2 f2 = −3

2
xy2 − 5xy + y

With this definitions a Gröbner basis can be equivalently defined by the
following theorem.

Theorem 1 (Buchberger’s Criterion) A set G = {g1, g2, . . . , gn} ⊆ K [x]
is a Gröbner basis ⇐⇒ normf (spol(g1, g2, G)) = 0

This theorem gives the main instruction of how to find the Gröbner basis of
an ideal if a generating system is given. Namely, we adjoin the system by
S-polynomials. The Gröbner basis is reached if the full reduction leads to
zero.
This procedure is known too under the name of Buchberger.

Theorem 2 (Buchberger’s Algorithm) For a finite set F = {g1, g2, . . . , gn} ⊆
K [x] the Gröbner basis G is determined by
G := F
B := {{g1, g2}|g1, g2 ∈ G with g1 6= g2}
while B 6= ∅ do

choose {g1, g2} from B
B := B {g2, g2}
h := spol(g1, g2)
h0 := normf(h,G)
if h0 6= 0 then
B := B ∪ {{g, h0}|g ∈ G}
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G := G ∪ {h0}
end if

end while
return G

For the set F we find the Gröbner basis G = {1}.
Defining a more involved set F ′ = {f ′1, f ′2, f ′3} in Q [x, y]

f ′1 = y2x− 5xy + 6x− y2 + 5 y − 6

f ′2 = −8x3 + 4xy2 + 4xy

f ′3 = 4x3y2 + 16x2y3 + 3 y5 + 13 y4

G = {x3 + 3
2x

2 − x− 3
2 , x+ 1

2y}.
There exists a Gröbner basis for every ideal. The reduced Gröbner basis,
which is the one which is fully inter-reduced and where the leading coeffi-
cients of each polynomial are equal to one, of a polynomial ideal is unique.
Since simultaneous zeros of the polynomials g1 and g2 are also zeros of
spol(g1, g2) by construction, the Gröbner basis has also the same simulta-
neous zeros as the original generating system. If further the underlying
ordering is lexicographic, we end up with at least one univariate polynomial
if the ideal is zero-dimensional. This is a considerable simplification of a
multivariate polynomial system. Such a system may be solved by subse-
quently solving after a variable. If we take our example F as a polynomial
system where f1 = 0, f2 = 0 and f3 = 0 we find from the Gröbner basis
G = {1} that there is no solution x, y fulfilling these equations. System
solving does work only for zero-dimensional ideals, i. e. the system in n
variables has only finitely many common zeros in Cn.
Even though Buchberger’s algorithm has one major handicap: the number
of iteration steps increases drastically with the degree and number of poly-
nomials, in the worst case the steps grow exponentially with the square of
the number of variables.
There exist enhanced Gröbner basis algorithms, implemented for example
in the CAS package SINGULAR [35]. But still, for larger numbers of variables
a calculation may take some time as we experienced within the scope of this
thesis. There exist several applications of Gröbner basis besides pure system
solving. For example one can test if a polynomial is contained in an ideal
by computing the Gröbner basis. Further one can check if a polynomial has
common roots with other polynomials by the use of Gröbner basis. This is
known as radical membership test.
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B Usefull SU(3) Relations

The following identities arrise from the relation

λiλj =
2
3
δij + (dijk + i fijk)λk (253)

for Gell-Mann matrices λi. Taking good care of the indices one arrives at
the identities given in [49], [50], [51].

3 dijkdklm − δilδjm + δimδjl − δijδlm + filkfkjm + fimkfkjl = 0 (254)
fijkfklm + filkfkjm + fimkfkjl = 0 (255)

filmdmjk + fjlmdimk + fklmdijm = 0 (256)

dilmdmjk + djlmdmik + dklmdijm − 1
3

(δijδkl + δjkδil + δikδjl) = 0 (257)

filmfjkm − 2
3

(δijδkl − δikδjl) + dijmdklm − dikmdjlm = 0 (258)

36 dpiqdqjmdmktdtlp − 13δijδkl − 7 δikδjl + 13 δilδjk − 6dikmdjlm = 0 (259)

Contraction over two indices reveals

fijkfljk = 3δil (260)

dijkdljk =
5
3
δil (261)

dijkfljk = 0. (262)

For the calculation in this work of interest are not only the tensors but
also their contractions with octets. Using the relations above we find for
contractions of a single octet

dijkaj (a ∗ a)k =
1
3
a2ai (263)

dijk (a ∗ a)j (a ∗ a)k =
2
3

(a ∗ a) a ai − 1
3
a2 (a ∗ a)i (264)

dilmdmjkalaj =
1
6
δik a2 +

1
3
aiak − dikmdmjlajal (265)
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