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1. Introduction

The production of a vector boson in association with jets represents one of the most
prominent classes of processes studied at the Large Hadron Collider (LHC). Thanks to the
large cross section and clean experimental signature, vector boson + jet production can be
probed with high accuracy over a wide range of jet multiplicities and energy scales [1–6].
Such measurements provide a powerful testing ground for the Standard Model as well
as for perturbative QCD methods and tools that build the fundament of all theoretical
simulations of high-energy collisions at hadron colliders.
Moreover V + multijet production is the dominant background in several searches of

physics beyond the Standard Model (BSM) that are based on signatures with leptons,
missing energy, and jets. In this context, precise theoretical predictions of the V + multijet
(V=W,Z) background can play a critical role for the precision of the measurements and
the sensitivity to new phenomena.

Predictions for V + multijet production at next-to-leading order (NLO) in QCD have
been available for some time, and even reach next-to-next-to-leading order (NNLO)
precision for V + 1 jet [7, 8].
Including the electroweak (EW) NLO corrections has proved more difficult due to

the presence of massive particles whose mass can not be neglected without sacrificing
precision. While NLO predictions for V + 1 jet have been available for a while, V +
multijet calculations have only become possible recently due to advances in the automation
of NLO calculations. [9–14]
Focusing on the more feasible QCD corrections and neglecting the EW corrections

can be justified for the calculation of integrated cross sections, where the QCD effects
dominate EW effects due to the difference between αs (∼ 0.12) and α (∼ 0.008). However,
depending on the phase space region highlighted by a particular differential cross section,
EW corrections can become very significant.

Precise predictions for pp→ V + n jets are not only obviously important for observables
that involve at least n jets, but they also play an important role for inclusive observables
that allow, but do not explicitly require, several jets. Important examples are the inclusive
distribution in the transverse momentum (pT ) of the leading jet and the total transverse
energy. As a result, NLO QCD predictions for pp → V + 1 jet at high jet pT are plagued
by giang K-factors and large scale uncertainties due to the dominance of n-jet final states
with n ≥ 2. It is clear that it is also not enough to include NLO EW results for pp → V
+ 1 jet only as they also miss the dominant effects, namely Sudakov-type EW corrections
to V + multijet production.
Having a computationally feasible method of calculating NLO EW corrections to V

+ multijet production for as many jets as possible would therefore be a very desirable
remedy to the situation. The EW Sudakov approximation (applicable at high energy
colliders such as the LHC when all hard-scattering energy parameters are well above the
EW scale) is one such method and it is a goal of this thesis to compare it’s predictions to
the full NLO EW corrections.
One key motivation of this work is to test the validity of the Sudakov approximation

for the case of V+multijet final states by comparing the results to the recent exact
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2. Electroweak (EW) Sudakov Logarithms as an Approximation of NLO EW corrections

calculations of NLO EW mentioned above. If the Sudakov approximation can be validated
as a close approximation, it would become a very powerful tool for obtaining NLO EW
results for final states involving many particles.

2. Electroweak (EW) Sudakov Logarithms as an
Approximation of NLO EW corrections

The derivation of the analytical expressions for the EW Sudakov logarithms was the
subject of reference [15]. This section provides a short summary of the formulas relevant
to the implementation.
We use the convention that all n external particles and their momenta are incoming,

such that the process reads

ϕi1(p1) . . . ϕin(pn)→ 0 (2.1)

and four momentum conservation requires that

n∑
k=1

pk = 0. (2.2)

Predictions for general processes with in- and outgoing particles can be obtained by
crossing symmetry.
All external particles are considered to be on-shell, i.e. p2

k = M2
k .

We restrict ourselves to the kinematic region where all invariants rkl are much larger
than the gauge boson masses:

rkl = (pk + pl)
2 �M2

W (2.3)

This condition is satisfied if the center-of-mass energy
√
s�MW and the scattering

angles are not too small.
The Sudakov approximation of NLO EW corrections captures all terms that are loga-

rithmically enhanced, i.e. terms that involve one or two powers of log(ŝ/M2). Correction
terms of order α that do not grow with increasing energy are neglected.

The logarithmic approximation of the virtual one-loop corrections lead to double (DL)
and single (SL) logarithmic terms written in terms of

L(rkl,M
2) :=

α

4π
log2 |rkl|

M2
, l(rkl,M

2) :=
α

4π
log
|rkl|
M2

, (2.4)

depending on the invariants rkl as defined in (2.3) and masses M .
We will be able to write the corrections in the form

δ = δLSC + δSSC + δC + δPR, (2.5)

where the DL corrections make up the leading soft-collinear (LSC) and subleading
soft-collinear (SSC) contributions, while the SL corrections form the contributions due to
soft or collinear (C) gauge boson emission and parameter renormalization (PR).
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n∑
k=1

∑
l<k

∑
Va=A,Z,W

Va

l

k

Figure 1: Feynman diagrams leading to DL corrections (external legs not involved in
exchange not shown)

The DL corrections originate from loop diagrams where virtual gauge bosons Va =
A,Z,W± are exchanged between pairs of external legs (Figure 1). The double logarithms
arise from the integration region where the gauge-boson momenta are soft and collinear
to one of the external legs.
By evaluating these diagrams in the eikonal approximation, where in the numerator

of the loop integral the gauge boson momentum is set to zero and all mass terms are
neglected, and using the high-energy expansion of the scalar three-point function, one
obtains

δMi1...in =
1

2

n∑
k=1

∑
l 6=k

∑
Va=A,Z,W±

IVa
i′kik

(k)I V̄a
i′lil

(l)Mi1...i′k...i
′
l...in

0 L(|rkl|,M2
Va). (2.6)

Using

log2

( |rkl|
M2

)
= log2

( s

M2

)
+ 2 log

( s

M2

)
log
(rkl
s

)
+ log2

(rkl
s

)
, (2.7)

we can expand (2.6) in terms of log(s/M2
W ). The angular dependent part is contained

in logarithms of rkl/s. The term log2(rkl/s) we neglect in LA. The other logarithms are
angular independent and give the leading soft-collinear (LSC) contribution.
Using the fact that the S matrix is invariant with respect to global SU(2) × U(1)

transformations, which implies ∑
l 6=k

IVa(l) = −IVa(k), (2.8)

the LSC corrections can be written as

δLSC(k) = −1

2

[
Cew
i′kik

(k)L(s)− 2(IZ(k)i′kik)2 log
M2
Z

M2
W

l(s) + δi′kikQ
2
kL

em(s, λ2,m2
k)

]
,

(2.9)
where Cew

i′kik
denotes the EW Casimir operator
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2. Electroweak (EW) Sudakov Logarithms as an Approximation of NLO EW corrections

Cew
i′kik

=
∑

Va=A,Z,W±

IVa
i′kik

I V̄a
i′kik

, (2.10)

and the last term contains the purely electromagnetic contribution with Qk being the
electromagnetic charge of particle k and

Lem(s, λ2,m2
k) := 2l(s) log

(
M2
W

λ2

)
+ L(M2

W , λ
2)− L(m2

k, λ
2). (2.11)

Explicit values for Cew can be found in appendix A.
The subleading soft-collinear contribution to (2.6) remains a sum over pairs of external

legs with angular-dependent terms.

δSSCMi1...in =
n∑
k=1

∑
l<k

∑
Va=A,Z,W±

δVa,SSC
i′kiki

′
lil

(k, l)Mi1...ik...i
′
l...in

0 (2.12)

The exchange of gauge bosons contributes with

δA,SSC
i′kiki

′
lil

(k, l) = 2
[
l(s) + l(M2

W , λ
2)
]

log

( |rkl|
s

)
IAi′kik

(k)IAi′lil
(l),

δZ,SSC
i′kiki

′
lil

(k, l) = 2l(s) log

( |rkl|
s

)
IZi′kik

(k)IZi′lil
(l),

δW
±,SSC

i′kiki
′
lil

(k, l) = 2l(s) log

( |rkl|
s

)
I±
i′kik

(k)I±
i′lil

(l),

(2.13)

where the couplings are diagonal matrices for the neutral gauge bosons A and Z. The
exchange of W bosons leads to the appearance of SU(2)-transformed matrix elements on
the right-hand side of (2.12). These are in general related to the original Born matrix
element in a nontrivial way.

The single logarithms (SL) originate from field renormalization and from mass-singular
loop diagrams (δC) as well as from parameter renormalization (δPR).
Field renormalization gives the well-known factors δZϕ/2 for each external leg, which

contain collinear as well as soft SL contributions.

δC
i′kik

(k) = δcoll
i′kik

(k) +
1

2
δZϕ

i′kik

∣∣∣∣∣
µ2=s

. (2.14)

For chiral fermions, the non-negligible contribution to δC reads

δC
fσfσ′

(fκ) = δσσ′
3

2
Cew
fκ , (2.15)
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and for transverse gauge bosons (VT ) it is

δC
Wσσ′ (VT ) = δσσ′

1

2
bew
W l(s),

δC
AA =

1

2
bew
AAl(s),

δC
ZZ =

1

2
bew
ZZ l(s),

δC
AZ(VT ) = bew

AZ l(s),

δC
ZA(VT ) = 0,

(2.16)

where bew denotes the one-loop coefficient of the β-function.
The SL originating form the renormalization of the parameters e (electric charge), cw

(cosine of the weak mixing angle) and the mass ratios ht = mt
MW

and hH =
M2
H

M2
W

is

δPRM =
δM0

δe
δe+

δM0

δcw
δcw +

δM0

δht
δht +

δM0

δhH
δheff

H

∣∣∣∣∣
µ2=s

. (2.17)

For the relevant counterterms for the implementation of V+multijet are the ones for
the electric charge and the weak mixing angle:

δc2
w

c2
w

=
sw
cw
bew
AZ l(µ

2)

δZe = −1

2
bew
AAl(µ

2) + δZew
e

δZew
e =

2

3

∑
f,i,σ 6=t

Nf
CQ

2
fσ l(M

2
W ,m

2
fσ,i

)

(2.18)

This gives us all the ingredients needed for implementing the EW Sudakov corrections
to V + multijet production.

3. Implementation

The EW Sudakov logarithms have been implemented using the existing software programs
OpenLoops [14], Sherpa [16] and Rivet [17]. Sherpa is a fully featured Monte Carlo
event generator and is used as the main program controlling the calculations. OpenLoops
provides matrix elements and can be used as a plug-in to Sherpa. Finally, Rivet is used
for analyzing the generated events and creating the desired histograms.
OpenLoops provides matrix elements for arbitrary standard model processes in LO

as well as NLO QCD and EW corrections. The goal of this thesis was to add the EW
Sudakov approximation. Since the Sudakov approximation only relies on leading order
matrix elements, it is computationally much cheaper than the rather complex full EW
correction, especially for final states involving many particles.
The matrix element including the NLO correction looks like

5



3. Implementation

|M|2NLO = |M0|2 + 2 Re(M∗0δM). (3.1)

The term |δM|2 already belongs to the NNLO.
The full NLO matrix element is obtained from summing over all possible helicity

configurations of the external particles. Both the LO matrix elements M0 and the
correction terms depend on the helicity (or rather the chirality in the case of the correction
factors (2.5), which we can equate in the high energy limit).
Therefore we have to construct the NLO matrix element as a sum over helicity states

of the external legs.

|M|2 =
∑
λ

|M0(λ)|2 + 2 Re(M0(λ)∗δM(λ)) (3.2)

Since OpenLoops uses the spinor helicity formalism to construct the LO matrix elements,
it internally calculates the LO matrix element |M0(λ)|2 for a given helicity configuration
λ of the external particles and then sums over all of them to obtain |M|2. OpenLoops
had to be modified to makeM0(λ) available, since out of the box, it only provides |M|2.
In addition, the bookkeeping of polarization states had to be modified in order to be able
to correctly identify left- and right-chiral fermions.
It was originally planned to implement the double logarithms using the fully general

formula (2.6). However, this approach eventually had to be abandoned because of
difficulties encountered in correctly computing the interference terms between the leading
order matrix element M0 and the SU(2) flipped matrix elements appearing in the
correction terms.
To avoid this problem, three different approximations have been implemented to

calculate the double logarithmic corrections.
The first and most naive approximation just implements formula (2.9) and ignores

the angular dependent contributions from (2.12). We also neglect the mass differences
between W, Z and photons thus leaving us with only the first term in the (2.9). This still
includes contributions from W,Z and γ exchange but corresponds to a theory where all
EW gauge boson masses equal MW . This version of the calculation, written out in (3.3)
is labeled "Sudakov no ang" in the result plots in section 4.

δDL
noang(λ) =

N∑
k=1

−1

2
Cew(k, σk(λ))L(s,M2

W ) (3.3)

The arguments of Cew denote the particle i and its helicity σi in the helicity configuration
λ.
A slightly more sophisticated approach tries to approximate the angular dependent

contributions by averaging over all n(n − 1)/2 invariants |rij | as in (3.4) and then use
ravg as the invariant in (2.6). This enables us to make use of 2.8 to obtain a single sum
over external legs again, resulting in equation (3.4). This approach is labeled "Sudakov
avg DL" in the plots.
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ravg =
2

n(n− 1)

n∑
i=2

∑
j<i

|rij |

δDL
avg(λ) =

n∑
k=1

−1

2
Cew(k, σk(λ))L(ravg,M

2
W )

(3.4)

The final refinement makes sure not to include invariants associated with particles
that don’t couple to the electroweak force, namely gluons, and only consider invariants
involved in the EW interaction. Starting out from equation (2.6), we calculate an average
invariant for each external leg

ravg(i) =
1

new − 1

∑
i<j

j 6=gluon

|rij |, (3.5)

where new denotes the number of external legs interacting though the EW force. Using
L(ravg(k),M2

W ) in (2.6), we can apply (2.8) again to obtain a single sum over the external
legs, this time weighted with a different double logarithm for each leg.

δDL
weighed(λ) =

n∑
k=1

−1

2
Cew(k, σk(λ))L(|ravg(k)|,M2

W ). (3.6)

This approach is labeled "Sudakov weighted DL" in the result plots.
One can prove (and it has been done in appendix E of reference [15]), that δC due to

the presence of a vector boson cancels almost exactly with δPR due to the parameter cw,
the cosine of the weak mixing angle, which is the only parameter relevant to the matrix
elements studied in this thesis. Thus we only implement δC due to fermions.
The operator Cew is diagonal everywhere but in the neutral gauge sector. Therefore

the only LO matrix element needed for W + multijet is the original matrix elementM0.
For the Z boson however, we also need the matrix element where instead of the Z, a
photon is produced. To avoid the aforementioned issues with calculating interference
terms between different matrix elements, the standard pp → γ+multijet matrix element
provided by OpenLoops was not used.

Instead, we go back to the symmetrical basis, where Cew is diagonal, and additionally
equals zero for the B field. The function to calculate pp → W3+multijet was added,
which is identical to the pp → Z+multijet matrix elements up to some coupling factors,
which made the aforementioned technical issues disappear.

Writing the Z+multijet matrix element as

MZ+jets = −swMB+jets + cwMW3+jets (3.7)

and the term common to all Sudakov approximations

Cew(Z)MZ+jets = −swCew(B)MB+jets + cwC
ew(W 3)MW3+jets

= cwC
ew(W 3)MW3+jets

(3.8)

7



4. Results

The B field did not have to be implemented, because the Cew(B) = 0.
In the end, the implemented formulas (varying by their implementation of δDL) read

|M|2NLO =
∑
λ

[
1 + 2 Re(δDL(λ) + δC(λ) + δPR(λ))

]
|M0(λ)|2 (3.9)

for W + multijet production, while for Z + multijet production we obtain

|M|2NLO =
∑
λ

[
1 + 2 Re(δDL

1 (λ) + δC
1 (λ) + δPR

1 (λ))
]
|M0(λ)|2

+2 Re(δDL
2 (λ))M∗0(λ)MW3+jets(λ),

(3.10)

where δ1 are all diagonal and include contributions from all external legs other than
the Z, while δ2 contains the W3 related terms described above in equation (3.8).

4. Results

4.1. General Remarks

In the following, results are presented for the processes pp → W+ + (1 or 2) jets and pp
→ Z0 + (1 or 2) jets.
All calculations were done at the current LHC collider energy of

√
s = 13 TeV.

The input parameters are listed in table 1. All other standard model parameters are
derived from the listed parameters.

Parameter Value
Parton distribution function NNPDF23_nlo_as_0118_qed [18]
Mass of W boson 80.385 GeV
Mass of Z boson 91.1876 GeV
Mass of t quark 173.2 GeV
Mass of other quarks 0
Mass of Higgs boson 126 GeV
Fermi constant GF 1.16637×10−5 GeV−2

Table 1: Input parameters

The renormalization scale was set to

1

2
Ĥ ′T =

1

2

∑
ET , (4.1)

where the sum goes over the transverse energy of all final state parton level objects.
The jets were identified using Sherpa’s anti-kT algorithm with the parameters pmin

T =
30 GeV, Emin

T = 0, D-parameter = 0.4, and |ηj | < 4.5.
Differential cross-sections with respect to the following observables have been studied:

• Pseudorapidity η of vector bosons and jets

8



4.1. General Remarks

• Transverse momentum pT of vector bosons and jets

• Total transverse energy Htot
T

• Invariant mass of the two jet system mjj (two jet case only)

• Azimuth angle between jets ∆φ12 (two jet case only)

The pseudorapidity η describes the angle of a particle relative to the beam axis and is
defined as

η = − ln

(
tan

θ

2

)
, (4.2)

where θ is the angle between the particle three-momentum and the positive direction
of the beam axis.
The transverse momentum pT of a particle is the magnitude of the component of the

particle’s three-momentum that is perpendicular to the beam axis:

pT =
√
p2
x + p2

y (4.3)

The total transverse energy Htot
T is the sum of all parton and vector boson transverse

energies, i.e.

Htot
T =

n∑
i=1

√
p2
T,i +m2

i (4.4)

In the case of two jets, we can define the invariant mass of the jet system mjj :

mjj = (E1 + E2)2 − ‖p1 + p2‖2 (4.5)

where Ei denotes the energy and pi denotes the three-momentum of jet i.
The last observable, also only applicable for the multijet case, is ∆φ12, thedifference of

the azimuth angles φ1 − φ2, i.e. the angle between the transverse jet momenta.

∆φ12 = arctan

(
py,1
px,1

)
− arctan

(
py,2
px,2

)
(4.6)

4.1.1. Plot structure

The plots in this section are all structured identically.
The top section of the plots shows the various differential cross sections in absolute

numbers.
The plot below shows the ratio between the leading order prediction and the various

NLO methods.
The bottom section shows the ratio between exact NLO EW results and the three

Sudakov approximations outlined in the section 3. The exact NLO EW results were
provided by Jonas Lindert using the OpenLoops+Sherpa implementation described in [13].
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4. Results

As mentioned in section 3, infrared singularities due to massless photons are removed
in a way that corresponds to using a photon-mass regulator Mγ = MW in the Sudakov
approximation. To be consistent with this regularisation of QED singularities, in the exact
NLO EW calculation we rescrict ourselves to purely virtual corrections and perform an MS
subtraction of IR singularities at the scale µ = MW . In this way, the logarithms of µ2/Q2

that result from soft and collinear 1/ε poles of QED origin are turned into logarithms of
M2
W /Q

2, which correspond to Sudakov logarithms from photons with Mγ = MW .

4.2. Vector Boson + 1 jet

The integrated cross sections calculated using the various methods are displayed in table
2. As expected, the correction to the integrated cross section due to NLO EW effects
is quite small. In order to see noticeable effects, one needs to look at differential cross
sections.

4.2.1. Angular-dependent observables

In the case of a single jet, the angular-dependent observables studies are the pseudorapidity
of the vector boson and of the jet. Since the pseudorapidity only depends on the angle
and is independent of the energies of the involved particles, the correction is very small
(less than 1%) and uniform across the whole range of interest.

There is no noticeable difference between the three different implementations of the
Sudakov logarithms, they all result in a very small correction.
Note the almost identical shape of the distribution for the pp → W+j and the pp →

Z+j process, apart from the larger overall cross section for W production.

pp → W+j σ/σLO pp → Z+j σ/σLO

LO 11498.7 pb 7065.7
Sudakov wtd DL 11464.2 pb −0.30% 7082.8 +0.24%
Sudakov avg DL 11549.4 pb +0.44% 7075.6 pb +0.14%
Sudakov no ang 11416.9 pb −0.71% 6974.3 pb −1.29%

NLO EW 11449.5 pb −0.43% 7011.4 pb −1.01%

Table 2: Integrated cross sections and correction relative to LO for pp → V+jet
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4.2. Vector Boson + 1 jet

pp → W+ + 1 jet√
s = 13 TeV
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Figure 2: Pseudorapidity distribution of the vector boson in pp → V+j
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Figure 3: Pseudorapidity distribution of the jet in pp → V+j
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4. Results

4.2.2. Energy-dependent observables

The energy dependent observables studied for the one jet case were the total transverse
energy and the transverse momenta of the vector boson and jet.
For Htot

T (fig. 4), the corrections are small for small values of Htot
T where the cross

section is the largest. For both pp → W+j (fig. 4a) and pp → Z+j (fig. 4b) they
progressively increases as Htot

T increases, reaching −25% for Htot
T = 2 TeV, −40% for Htot

T

= 4 TeV, and more than −50% for Htot
T = 6 TeV.

For the pT distributions, we get a similar picture. First of all, the distributions in pT,V
(fig. 5) and pT,j1 (fig. 6) are virtually identical. This is of course to be expected for V +
exactly one jet, since due to momentum conservation we can only produce back-to-back
jets with exactly opposite transverse momenta.
As for Htot

T , the (negative) corrections increase with increasing values of pT , reaching
−25% at 1 TeV and −40% at 2 TeV. Again this is not surprising, because Htot

T differs
from the sum of the pT only by the vector boson mass.
Comparing the three different implementation methods, it is clear that the weighted

method of (3.6) agrees the best with the full NLO EW calculation, deviating less than
2% for much of the relevant range for the W+j process and less than 4% for the Z+j
process. The simple average method of (3.4) performs slightly worse, deviating around
4% for W+j and 8% for Z+j. Ignoring the angular-dependent terms is much inferior to
the other two, deviating up to 20% in the same range for both processes.
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4.2. Vector Boson + 1 jet

pp → W+ + 1 jet√
s = 13 TeV
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Figure 4: Total transverse energy distribution in pp → V+j
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Figure 5: Vector boson transverse momentum distribution in pp → V+j

13



4. Results

pp → W+ + 1 jet√
s = 13 TeV
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Figure 6: Jet transverse momentum distribution in pp → V+j
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4.2. Vector Boson + 1 jet

4.2.3. High-energy cuts

High-energy cuts have been used to show enhanced effects of the Sudakov logarithms. The
effects are particularly large when there is a vector boson with large transverse momentum
pT,V involved in the process.
For V+j production, the cut applied is pT,V > 1 TeV.
For the angular dependend observables, we still observe an almost uniform correction

with the cut applied, but it is much larger at around 25% for the vector boson pseudo-
rapidity (fig. 7), and around 30% for the jet pseudorapidity (fig. 8). In addition, the
correction in not quite as flat anymore as in the inclusive case. In figure 7 there is an
increase of the correction for large values of |ηV | in all three Sudakov approximations,
although it is relatively slight for the weighted approach of (3.6).
Compared to the full NLO computation, this becomes even more noticeable, as for

large |ηV | the difference in correction reaches 10% for the weighted approach and up to
25% for the other two approximations.

In the ηj1 distributions, this behavior is still there, but much weaker. Especially in
figure 8b it can only really be seen at the very larges values of |ηj1 |.

We again see that the weighted DL approach results in the best agreement with the full
NLO results, while ignoring the angular dependent contributions results in a significant
discrepancy.
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4. Results

pp → W+ + 1 jet√
s = 13 TeV
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Figure 7: Pseudorapidity distribution of the vector boson in pp → V+j

pp → W+ + 1 jet√
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Figure 8: Pseudorapidity distribution of the jet in pp → V+j
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4.3. Vector Boson + 2 jets

4.3. Vector Boson + 2 jets

pp → W+ + 2j σ/σLO pp → Z + 2j σ/σLO

LO 4012.6 pb 2363.3
Sudakov wtd DL 3960.2 pb −1.31% 2315.6 pb −2.02%
Sudakov avg DL 3947.2 pb −1.63% 2305.4 pb −2.44%
Sudakov no ang 3770.3 pb −6.04% 2189.1 pb −7.37%

NLO EW 3979.2 pb −0.8% 2330.9 pb −1.37%

Table 3: Integrated cross sections for pp → V+2 jets

The integrated cross section results are summarized in table 3. Compared to the V+jet
results in table 2, the corrections to the integrated cross sections are a bit larger, but still
on the order of a few percent. Again, the significant corrections show up in the differential
cross sections where pT is large.

4.3.1. Angular-dependent observables

The angular dependent observables again show very small corrections only. As for V+j,
we can study the pseudorapidity of the vector boson (fig. 9) and of the the first jet (fig.
10). The corrections remain small, but instead of the almost perfectly flat distribution of
the corrections for V+j, we now notice an increase of the corrections for large |ηV | as in
the V+j with high energy cuts applied, although the effect is much smaller here, only
reaching a maximum difference of about 5% in all but the "no angular" approximations.
In the ηj1 distribution, this effect is barely there at all. There is no significant difference
between W and Z production here.
In addition, we now can also study the second jet (fig. 11) and the azimuth angle

between the jets (fig. 12).
The ηj2 distribution looks virtually identical to the ηj1 distribution, which is not that

surprising.
The ∆φ12 distribution shows very small corrections compared to LO in all the considered

approaches, about 5% for the "no ang" approach and around 1% for the other two. It is
almost completely flat across the whole range of ∆φ12 = 0 to ∆φ12 = π. Only the "no
ang" approach shows a slight increase for larger angles.
Interestingly, the full NLO calculation here agrees better with the "no ang" approach

than the other two.
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4. Results

pp → W+ + 2 jets√
s = 13 TeV
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Figure 9: Pseudorapidity distribution of the vector boson in pp → V+2j
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Figure 10: Pseudorapidity distribution of the first jet in pp → V+2j
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4.3. Vector Boson + 2 jets

pp → W+ + 2 jets√
s = 13 TeV
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Figure 11: Pseudorapidity distribution of the second jet in pp → V+2j

pp → W+ + 2 jets√
s = 13 TeV
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Figure 12: Distribution of the angle between the two jets in pp → V+2j
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4. Results

4.3.2. Energy-dependent observables

The inclusive energy-dependent observables studied already for V+j already are Htot
T ,

pT,V and pT,j1 .
For the Htot

T distribution (fig. 13), the corrections have decreased significantly, only
−15% at 2 TeV and −30% at 6 TeV as compared to −25% and −50%, respectively, for
V+j. Other than that, the structure of the corrections remain the same, continually
increasing with increasing Htot

T . Note the enormous discrepancy between the "no ang"
approximation and al the others. It seems the angular dependent log terms make up a
larger fraction of the correction here than with most other observables.
The pT,V distribution (fig. 14) is virtually identical to the V+j case.
In the pT,j1 distribution (fig. 15) we notice a decrease in the size of the correction

compared to the V+j case. At 1 TeV, corrections reach −15% as compared to −25%,
and around −30% instead of −50% in V+j. This is due to the fact that the pT,j1 is not
necessarily accompanied by an equally large pT,V but is also compensated by the second
jet. This shows again that a large pT,V leads to larger corrections.

The pT,j2 distribution in (fig. 16) looks very similar to the pT,j1 case, with just slightly
smaller corrections.
At V+2j, we can also look at the invariant mass of the two jets mjj (fig. 17). This is

the only observable studied where the Sudakov approximation does not appear to work
particularly well. The slight incerase in correction shown in the full NLO calculation
is strongly enhanced in the Sudakov approximation, reaching a difference of 10-15% for
much of the studied range in the best case and almost 50% in the case of the "no ang"
approximation. This is most likely due to the condition (2.3) not being fulfilled in a
consistent manner for large values of mjj .
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4.3. Vector Boson + 2 jets

pp → W+ + 2 jets√
s = 13 TeV
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Figure 13: Total transverse energy distribution in pp → V+2j

pp → W+ + 2 jets√
s = 13 TeV
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Figure 14: Vector boson transverse momentum distribution in pp → V+2j
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4. Results

pp → W+ + 2 jets√
s = 13 TeV
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Figure 15: Distribution of the transverse momentum of the first jet in pp → V+2j

pp → W+ + 2 jets√
s = 13 TeV
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Figure 16: Distribution of the transverse momentum of the second jet in pp → V+2j
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4.3. Vector Boson + 2 jets

pp → W+ + 2 jets√
s = 13 TeV
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Figure 17: Two jet invariant mass distribution in pp → V+2j
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4. Results

4.3.3. High-energy cuts

As in the one jet case, high-energy cuts have been used to show enhanced effects of the
Sudakov logarithms.

In addition to the pT,V > 1 TeV cut introduced in section 4.2, in the case of two jets, we
can also require ∆φ12 < 3π/4. This makes sure that the conservation of momentum in the
transverse plane is not fulfilled by back-to-back hard jets and a soft vector boson. Instead,
it requires that the sum of the jet momenta leaves the vector boson with a considerable
amount of transverse momentum to absorb. However, it does allow for much softer gauge
boson transverse momenta.
The effect of the cut on the η distributions (fig. 18, 19 and 20) have already been

discussed in section 4.2.3 and appear virtually unchanged in V+2j.
The only interesting feature shows up in the distribution of ηj2 in figure 20, where

applying the cut changes the shape of the distribution away from allowing a relatively
wide range of η to strongly preferring |η| around 0. However, this effect already shows up
in LO and the corrections look identical to the previously discussed η distributions.

The last angular-dependent observable ∆φ12 (fig. 21) shows strongly enhanced correc-
tions of −30% across the whole range.The effect is evenly distributed and does not show
any unexpected features.
Applying the ∆φ12 < 3π/4 cut on the Htot

T distribution (fig. 22) only enhances the
correction by a few percent compared to the inclusive distribution in figure 13.

The mjj distribution (fig. 23) behaves similarly to the angular dependend observables.
The corrections are enhanced across the whole range by around −30%, while the overall
shape of the corrections remains the same.

Applying the pT,V > 1 TeV cut to the pT,j1 distributions (fig. 24) changes the shape of
the distribution to one peaked at pT,j1 = 1 TeV with a sharp cut-off at 500 GeV. It is also
around this peak that we notice the strongest enhancement of the corrections (increasing
from −15% to more than −25%, with the tail end only slightly affected.
The second jet is less affected by the cut, but still the area of low pT,j2 experiences a

strong enhancement of the correction to around −30%.
The effect of the ∆φ12 cut on the pT,j distributions (fig. 26 and 27) more subtle and

appear to have an almost negligable effect on the cross section.
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4.3. Vector Boson + 2 jets

pp → W+ + 2 jets√
s = 13 TeV
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Figure 18: Pseudorapidity distribution of the vector boson in pp → V+2j with pT,V > 1
TeV

pp → W+ + 2 jets√
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Figure 19: Pseudorapidity distribution of the first jet in pp → V+2j with pT,V > 1 TeV
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4. Results

pp → W+ + 2 jets√
s = 13 TeV
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Figure 20: Pseudorapidity distribution of the second jet in pp→ V+2j with pT,V > 1 TeV

pp → W+ + 2 jets√
s = 13 TeV
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4.3. Vector Boson + 2 jets

pp → W+ + 2 jets√
s = 13 TeV
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Figure 22: Total transverse energy distribution in pp → V+2j with ∆φ12 < 3π/4

pp → W+ + 2 jets√
s = 13 TeV
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Figure 23: Two jet invariant mass distribution in pp → V+2j with pT,V > 1 TeV
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4. Results

pp → W+ + 2 jets√
s = 13 TeV
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Figure 24: Distribution of the transverse momentum of the first jet in pp → V+2j with
pT,V > 1 TeV

pp → W+ + 2 jets√
s = 13 TeV
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Figure 25: Distribution of the transverse momentum of the second jet in pp → V+2j with
pT,V > 1 TeV
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4.3. Vector Boson + 2 jets

pp → W+ + 2 jets√
s = 13 TeV
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Figure 26: Distribution of the transverse momentum of the first jet in pp → V+2j with
∆φ12 < 3π/4

pp → W+ + 2 jets√
s = 13 TeV
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Figure 27: Distribution of the transverse momentum of the second jet in pp → V+2j with
∆φ12 < 3π/4
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5. Summary and Conclusions

5. Summary and Conclusions

We implemented the Sudakov logarithms approximation to the electroweak next-to-leading
order corrections to the process pp → V + j.
The corrections were implemented in the OpenLoops matrix element generator and

used the Sherpa Monte Carlo generator to generate the hadron collider simulations.
The double logarithms were implemented in three different approximations, where the

weighted approach described in equation (3.6) proved most accurate.
The results showed large corrections of up to 50% occurring whenever the transverse

momentum of the gauge boson was large. This is an important effect that needs to be
included in order to get accurate predictions for V+jets.
The agreement between the Sudakov logarithms and the exact NLO EW calculation

was very good in most cases. For most observables the deviation was less than 5% for
much of the studied range. The main exception was the mjj observable, the invariant
jet mass of the two jet system in pp → V + 2 jets, where the Sudakov approximations
significantly overestimated the corrections as compared to the exact calculations.
A future implementation should attempt to keep track of the degree to which the

preconditions that make the Sudakov appriximation accurate are met.
Overall, the Sudakov approximation proved very effective and should be implemented

in a fully general, automatic manner and be validated more extensively. Then it could
prove to be a very useful tool for processes involving many particles in the final state, as
the computational complexity is the same as for leading order matrix elements.
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A. Operators and their eigenvalues

For the production of Z bosons, both the symmetrical and the physical basis of the gauge
bosons were used.

The physical fields N = A,Z are related to the symmetrical fields Ñ = B,W 3 through
the Weinberg rotation,

N = UNÑ (θw)Ñ , U(θw =

(
cw −sw
sw cw

)
(A.1)

where cw = cos θw and sw = sin θw. The weak mixing angle is fixed by

cw =
MW

MZ
. (A.2)

The gauge couplings in the symmetrical basis read

ĨB = − 1

cw

Y

2
, ĨW

a
=

1

sw
T a, a = 1, 2, 3 (A.3)

where Y denotes the weak hypercharge and T a are the components of the weak isospin.
In the physical basis this results in

IA = −Q, IZ =
T 3 − s2

wQ

swcw
, I± =

1

sw
T± =

1

sw

T 1 ± iT 2

√
2

(A.4)

with Q = T 3 + Y/2.
The electroweak Casimir operator is

Cew :=
∑

Va=A,Z,W±

IV
a
I V̄

a
. (A.5)

In table 4, explicit values of operator eigenvalues used in the implemented processes
are given.

EW β-function

The one-loop coefficients of the β-function in the symmetric basis are

b̃ew
B = − 41

6c2
w

, b̃ew
W =

19

6s2
w

. (A.6)

In the physical basis, they become

bew
AA = −11

3

bew
AZ = −19 + 22s2

w

6swcw

bew
ZZ = −19− 38s2

w − 22s4
w

6swcw
.

(A.7)
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A. Operators and their eigenvalues

Y/2 Q T 3 (IA)2 (IZ)2 (IW )2 Cew

uL, ūL ±1
6 ±2

3 ±1
2

4
9

(3c2w−s2w)2

36s2wc
2
w

1
2s2w

s22+27c2w
36c2ws

2
w

dL, d̄L ±1
6 ∓1

3 ∓1
2

1
9

(3c2w+s2w)2

36s2wc
2
w

1
2s2w

s22+27c2w
36c2ws

2
w

uR, ūR ±2
3 ±2

3 0 4
9

4
9
s2w
c2w

0 4
9c2w

dR, d̄R ∓1
3 ∓1

3 0 1
9

1
9
s2w
c2w

0 1
9c2w

W± 0 ±1 ±1 1 c2w
s2w

1
s2w

2
s2w

W 3 0 0 0 0 0 2
s2w

2
s2w

B 0 0 0 0 0 0 0

Table 4: SU(2) operator eigenvalues
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